{"title":"人骨髓间充质干细胞中decorin的敲低抑制蛋白聚糖层的形成并在氧化钛表面建立促炎环境","authors":"Hisanobu Kamio, Kazuto Okabe, Masaki Honda, Kensuke Kuroda, Shuhei Tsuchiya","doi":"10.1007/s10856-024-06849-0","DOIUrl":null,"url":null,"abstract":"<div><p>Osseointegration is essential for successful implant treatment. However, the underlying molecular mechanisms remain unclear. In this study, we focused on decorin (DCN), which was hypothesized to be present in the proteoglycan (PG) layer at the interface between bone and the titanium oxide (TiOx) surface. We utilized DCN RNA interference in human bone marrow mesenchymal stem cells (hBMSCs) to investigate its effects on PG layer formation, proliferation, initial adhesion, cell extension, osteogenic capacity, fibrotic markers, and immunotolerance to TiOx in vitro. After 14 days of cultivation, we observed no PG layer was detected, and the osteogenic capacity was suppressed in DCN-depleted hBMSCs. Furthermore, the conditioned medium upregulated the expression of M1 macrophage markers in human macrophages. These results suggest that endogenous DCN plays a crucial role in PG layer formation and that the PG layer alters inflammation around Ti materials.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-024-06849-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Knockdown of decorin in human bone marrow mesenchymal stem cells suppresses proteoglycan layer formation and establishes a pro-inflammatory environment on titanium oxide surfaces\",\"authors\":\"Hisanobu Kamio, Kazuto Okabe, Masaki Honda, Kensuke Kuroda, Shuhei Tsuchiya\",\"doi\":\"10.1007/s10856-024-06849-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osseointegration is essential for successful implant treatment. However, the underlying molecular mechanisms remain unclear. In this study, we focused on decorin (DCN), which was hypothesized to be present in the proteoglycan (PG) layer at the interface between bone and the titanium oxide (TiOx) surface. We utilized DCN RNA interference in human bone marrow mesenchymal stem cells (hBMSCs) to investigate its effects on PG layer formation, proliferation, initial adhesion, cell extension, osteogenic capacity, fibrotic markers, and immunotolerance to TiOx in vitro. After 14 days of cultivation, we observed no PG layer was detected, and the osteogenic capacity was suppressed in DCN-depleted hBMSCs. Furthermore, the conditioned medium upregulated the expression of M1 macrophage markers in human macrophages. These results suggest that endogenous DCN plays a crucial role in PG layer formation and that the PG layer alters inflammation around Ti materials.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10856-024-06849-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-024-06849-0\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-024-06849-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Knockdown of decorin in human bone marrow mesenchymal stem cells suppresses proteoglycan layer formation and establishes a pro-inflammatory environment on titanium oxide surfaces
Osseointegration is essential for successful implant treatment. However, the underlying molecular mechanisms remain unclear. In this study, we focused on decorin (DCN), which was hypothesized to be present in the proteoglycan (PG) layer at the interface between bone and the titanium oxide (TiOx) surface. We utilized DCN RNA interference in human bone marrow mesenchymal stem cells (hBMSCs) to investigate its effects on PG layer formation, proliferation, initial adhesion, cell extension, osteogenic capacity, fibrotic markers, and immunotolerance to TiOx in vitro. After 14 days of cultivation, we observed no PG layer was detected, and the osteogenic capacity was suppressed in DCN-depleted hBMSCs. Furthermore, the conditioned medium upregulated the expression of M1 macrophage markers in human macrophages. These results suggest that endogenous DCN plays a crucial role in PG layer formation and that the PG layer alters inflammation around Ti materials.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.