微生物合成Fe3O4-SPIONs对红罗非鱼胚胎/幼虫个体发育的影响

IF 3.9 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Applied Microbiology and Biotechnology Pub Date : 2025-01-07 DOI:10.1007/s00253-024-13386-x
Samia S. Abouelkheir, Mona M. Mourad
{"title":"微生物合成Fe3O4-SPIONs对红罗非鱼胚胎/幼虫个体发育的影响","authors":"Samia S. Abouelkheir,&nbsp;Mona M. Mourad","doi":"10.1007/s00253-024-13386-x","DOIUrl":null,"url":null,"abstract":"<p>Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored. Therefore, using the red tilapia (<i>Oreochromis</i> sp.) as a model organism, this study is the first to talk about the subtle cellular alterations caused by biologically induced biomineralized Fe<sub>3</sub>O<sub>4</sub>-SPIONs by <i>Bacillus</i> sp. in the early-life stages. Once the red tilapia eggs were fertilized, they were challenged to different doses of SPIONs (0, 5, 10, 15, and 30 mg/l), and their tenfold increases (50, 100, 150, and 300 mg/l) for 72 h. The hatching rate, malformation rate, body length, and deformities of the larvae were all studied. Our research showed that iron oxide nanoparticles were harmful to the early stages of life in red tilapia embryos and larvae. They slowed hatching delay, a decrease in survival rate, an increase in heart rate, bleeding, arrested development, and membrane damage and changed the axis’s physiological structure. Additionally, results indicated numerous deformities of red tilapia larvae, with lordosis, kyphosis, and scoliosis once subjected to 50 and 150 mg/l of SPIONs concentrations, respectively. This study could assist us in recognizing the risk and evaluating the disrupting potential of nanoparticles. The key objective of this inquiry is to describe the existing features of the produced magnetite SPIONs (29.44 g/l) including their morphological, chemical, and magnetic characteristics. Illustrate their current role in medicinal applications and aquatic organisms by studying in vivo cytotoxic effects to motivate the development of enhanced SPIONs systems. As a recommendation, more research is needed to completely understand how various exposure endpoints of SPIONs disturb the bodies of red tilapia in the early stages.</p><p>• <i>Biogenic SPIONs: a material of the future.</i></p><p>• <i>Characterization is essential to assess the functional properties of the produced SPIONs.</i></p><p>• <i>Fe</i><sub><i>3</i></sub><i>O</i><sub><i>4</i></sub><i>-SPIONs’ impact on the red tilapia ontogeny.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-024-13386-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Anxiety of microbially synthesized Fe3O4-SPIONs on embryonic/larval ontogeny in red tilapia (Oreochromis sp.)\",\"authors\":\"Samia S. Abouelkheir,&nbsp;Mona M. Mourad\",\"doi\":\"10.1007/s00253-024-13386-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored. Therefore, using the red tilapia (<i>Oreochromis</i> sp.) as a model organism, this study is the first to talk about the subtle cellular alterations caused by biologically induced biomineralized Fe<sub>3</sub>O<sub>4</sub>-SPIONs by <i>Bacillus</i> sp. in the early-life stages. Once the red tilapia eggs were fertilized, they were challenged to different doses of SPIONs (0, 5, 10, 15, and 30 mg/l), and their tenfold increases (50, 100, 150, and 300 mg/l) for 72 h. The hatching rate, malformation rate, body length, and deformities of the larvae were all studied. Our research showed that iron oxide nanoparticles were harmful to the early stages of life in red tilapia embryos and larvae. They slowed hatching delay, a decrease in survival rate, an increase in heart rate, bleeding, arrested development, and membrane damage and changed the axis’s physiological structure. Additionally, results indicated numerous deformities of red tilapia larvae, with lordosis, kyphosis, and scoliosis once subjected to 50 and 150 mg/l of SPIONs concentrations, respectively. This study could assist us in recognizing the risk and evaluating the disrupting potential of nanoparticles. The key objective of this inquiry is to describe the existing features of the produced magnetite SPIONs (29.44 g/l) including their morphological, chemical, and magnetic characteristics. Illustrate their current role in medicinal applications and aquatic organisms by studying in vivo cytotoxic effects to motivate the development of enhanced SPIONs systems. As a recommendation, more research is needed to completely understand how various exposure endpoints of SPIONs disturb the bodies of red tilapia in the early stages.</p><p>• <i>Biogenic SPIONs: a material of the future.</i></p><p>• <i>Characterization is essential to assess the functional properties of the produced SPIONs.</i></p><p>• <i>Fe</i><sub><i>3</i></sub><i>O</i><sub><i>4</i></sub><i>-SPIONs’ impact on the red tilapia ontogeny.</i></p>\",\"PeriodicalId\":8342,\"journal\":{\"name\":\"Applied Microbiology and Biotechnology\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00253-024-13386-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Microbiology and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00253-024-13386-x\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-024-13386-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

氧化铁纳米颗粒以其超顺磁性而闻名,有望用于未来的医疗保健治疗。然而,它们在医学和电子产品中的广泛使用导致它们排放到我们的环境中,这突出表明需要进一步研究它们对水生生物的细胞损伤作用。虽然其他化合物的有害特性已经在鱼的早期生命阶段被证实,但超顺磁性氧化铁纳米颗粒(SPIONs)在这些阶段的细胞毒性后果仍未被探索。因此,本研究以红罗非鱼(Oreochromis sp.)为模式生物,首次探讨了芽孢杆菌在生命早期诱导生物矿化Fe3O4-SPIONs引起的细微细胞变化。将红罗非鱼卵受精后,分别给予不同剂量的SPIONs(0、5、10、15和30 mg/l),并将SPIONs浓度提高10倍(50、100、150和300 mg/l),持续72 h,观察其孵化率、畸形率、体长和畸形情况。我们的研究表明,氧化铁纳米颗粒对红罗非鱼胚胎和幼虫的早期生命阶段有害。它们减缓了孵化延迟、存活率下降、心率增加、出血、发育受阻和膜损伤,并改变了轴的生理结构。此外,结果表明,一旦分别受到50和150 mg/l SPIONs浓度的影响,红罗非鱼幼虫会出现大量畸形,出现前凸、后凸和脊柱侧凸。本研究有助于我们认识纳米颗粒的危害和评价其潜在的破坏作用。本研究的主要目的是描述生产的磁铁矿SPIONs (29.44 g/l)的现有特征,包括其形态、化学和磁性特征。通过研究体内细胞毒性效应来激发增强型SPIONs系统的发展,说明它们目前在医学应用和水生生物中的作用。作为一项建议,需要更多的研究来完全了解SPIONs的不同暴露端点如何在早期阶段扰乱红罗非鱼的身体。•生物SPIONs:未来的材料。表征对于评估生成的spion的功能特性至关重要。Fe3O4-SPIONs对红罗非鱼个体发育的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Anxiety of microbially synthesized Fe3O4-SPIONs on embryonic/larval ontogeny in red tilapia (Oreochromis sp.)

Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored. Therefore, using the red tilapia (Oreochromis sp.) as a model organism, this study is the first to talk about the subtle cellular alterations caused by biologically induced biomineralized Fe3O4-SPIONs by Bacillus sp. in the early-life stages. Once the red tilapia eggs were fertilized, they were challenged to different doses of SPIONs (0, 5, 10, 15, and 30 mg/l), and their tenfold increases (50, 100, 150, and 300 mg/l) for 72 h. The hatching rate, malformation rate, body length, and deformities of the larvae were all studied. Our research showed that iron oxide nanoparticles were harmful to the early stages of life in red tilapia embryos and larvae. They slowed hatching delay, a decrease in survival rate, an increase in heart rate, bleeding, arrested development, and membrane damage and changed the axis’s physiological structure. Additionally, results indicated numerous deformities of red tilapia larvae, with lordosis, kyphosis, and scoliosis once subjected to 50 and 150 mg/l of SPIONs concentrations, respectively. This study could assist us in recognizing the risk and evaluating the disrupting potential of nanoparticles. The key objective of this inquiry is to describe the existing features of the produced magnetite SPIONs (29.44 g/l) including their morphological, chemical, and magnetic characteristics. Illustrate their current role in medicinal applications and aquatic organisms by studying in vivo cytotoxic effects to motivate the development of enhanced SPIONs systems. As a recommendation, more research is needed to completely understand how various exposure endpoints of SPIONs disturb the bodies of red tilapia in the early stages.

Biogenic SPIONs: a material of the future.

Characterization is essential to assess the functional properties of the produced SPIONs.

Fe3O4-SPIONs’ impact on the red tilapia ontogeny.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Microbiology and Biotechnology
Applied Microbiology and Biotechnology 工程技术-生物工程与应用微生物
CiteScore
10.00
自引率
4.00%
发文量
535
审稿时长
2 months
期刊介绍: Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.
期刊最新文献
The role of essential oils as eco-friendly strategy to control biofilm collected in the Colosseum (Rome, Italy) From pre-culture to solvent: current trends in Clostridium acetobutylicum cultivation MalS, a periplasmic α-amylase in Escherichia coli, has a binding affinity to glycogen with unique substrate specificities Establishment of one-step duplex TaqMan real-time PCR for detection of feline coronavirus and panleukopenia virus Enhancement of immune responses to classical swine fever virus E2 in mice by fusion or mixture with the porcine IL-28B
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1