{"title":"纳米碳球复合材料在超级电容器中的应用进展","authors":"Jie Li, Ruidong Li, Tingxi Li, Yong Ma","doi":"10.1007/s42114-024-01187-9","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors, as a novel type of energy storage device, have garnered significant attention due to their outstanding charging and discharging rates, high power density, and safe operation. Electrode materials, crucial components of supercapacitor devices, directly influence the electrochemical performance. Hollow carbon spheres (HCSs) have emerged as noteworthy candidates in energy storage and conversion, particularly in high-performance supercapacitors, owing to their well-defined morphology, uniform size (100 μm to 3 nm), low density, and extensive surface area (300–2221 m<sup>2</sup> g<sup>−1</sup>). Substantial advancements have been achieved in developing advanced supercapacitor electrode materials incorporating hollow carbon sphere structures. This paper provides a comprehensive overview and discussion of the preparation of hollow spheres with controllable structure and morphology. Additionally, it explores various methods employed in recent years to enhance HCS, encompassing variations in doping elements and adjustments in content and composite types. The primary objective of this paper is to elucidate the application of HCS as electrode materials in supercapacitors and to serve as a reference for further research on HCS-based materials.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 1","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in the utilization of nanocarbon sphere composites in supercapacitor\",\"authors\":\"Jie Li, Ruidong Li, Tingxi Li, Yong Ma\",\"doi\":\"10.1007/s42114-024-01187-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Supercapacitors, as a novel type of energy storage device, have garnered significant attention due to their outstanding charging and discharging rates, high power density, and safe operation. Electrode materials, crucial components of supercapacitor devices, directly influence the electrochemical performance. Hollow carbon spheres (HCSs) have emerged as noteworthy candidates in energy storage and conversion, particularly in high-performance supercapacitors, owing to their well-defined morphology, uniform size (100 μm to 3 nm), low density, and extensive surface area (300–2221 m<sup>2</sup> g<sup>−1</sup>). Substantial advancements have been achieved in developing advanced supercapacitor electrode materials incorporating hollow carbon sphere structures. This paper provides a comprehensive overview and discussion of the preparation of hollow spheres with controllable structure and morphology. Additionally, it explores various methods employed in recent years to enhance HCS, encompassing variations in doping elements and adjustments in content and composite types. The primary objective of this paper is to elucidate the application of HCS as electrode materials in supercapacitors and to serve as a reference for further research on HCS-based materials.</p></div>\",\"PeriodicalId\":7220,\"journal\":{\"name\":\"Advanced Composites and Hybrid Materials\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":23.2000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Composites and Hybrid Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42114-024-01187-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01187-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Advancements in the utilization of nanocarbon sphere composites in supercapacitor
Supercapacitors, as a novel type of energy storage device, have garnered significant attention due to their outstanding charging and discharging rates, high power density, and safe operation. Electrode materials, crucial components of supercapacitor devices, directly influence the electrochemical performance. Hollow carbon spheres (HCSs) have emerged as noteworthy candidates in energy storage and conversion, particularly in high-performance supercapacitors, owing to their well-defined morphology, uniform size (100 μm to 3 nm), low density, and extensive surface area (300–2221 m2 g−1). Substantial advancements have been achieved in developing advanced supercapacitor electrode materials incorporating hollow carbon sphere structures. This paper provides a comprehensive overview and discussion of the preparation of hollow spheres with controllable structure and morphology. Additionally, it explores various methods employed in recent years to enhance HCS, encompassing variations in doping elements and adjustments in content and composite types. The primary objective of this paper is to elucidate the application of HCS as electrode materials in supercapacitors and to serve as a reference for further research on HCS-based materials.
期刊介绍:
Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field.
The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest.
Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials.
Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.