Jiwang Tang , Ben Niu , Gang Fu , Jinlong Peng , Zhigang Hu , Xianzhou Zhang
{"title":"1982 - 2020年植被生产力干旱敏感性变化趋势","authors":"Jiwang Tang , Ben Niu , Gang Fu , Jinlong Peng , Zhigang Hu , Xianzhou Zhang","doi":"10.1016/j.agrformet.2025.110388","DOIUrl":null,"url":null,"abstract":"<div><div>Drought has imposed severe effects on vegetation productivity, and such impacts will continue to increase under ongoing climate change. However, long-term changes in vegetation sensitivity to drought (S<sub>dro</sub>) remain poorly understood. Here, with satellite-based vegetation indexes (kNDVI and LAI) and soil moisture dataset, we investigated the spatiotemporal patterns of S<sub>dro</sub> across the global land during 1982–2020. We found that S<sub>dro</sub> was higher in dry regions in comparison to humid regions, and grasslands showed the highest S<sub>dro</sub> while forests showed the lowest one. Temporally, the overall S<sub>dro</sub> increased first and then decreased over past four decades. More than 55 % of global vegetated areas experienced a conversion from an increased trend to a declined trend in S<sub>dro</sub>, which concentrated in humid regions. The potential driving mechanisms of these converted S<sub>dro</sub> trends were mostly related to climate changes and varied regionally, with VPD in northern Europe, temperature in middle Africa, and precipitation in western America and northern India. Our findings underscore a shifted trend in vulnerability of terrestrial ecosystems to drought especially in global humid regions.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"362 ","pages":"Article 110388"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shifted trend in drought sensitivity of vegetation productivity from 1982 to 2020\",\"authors\":\"Jiwang Tang , Ben Niu , Gang Fu , Jinlong Peng , Zhigang Hu , Xianzhou Zhang\",\"doi\":\"10.1016/j.agrformet.2025.110388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drought has imposed severe effects on vegetation productivity, and such impacts will continue to increase under ongoing climate change. However, long-term changes in vegetation sensitivity to drought (S<sub>dro</sub>) remain poorly understood. Here, with satellite-based vegetation indexes (kNDVI and LAI) and soil moisture dataset, we investigated the spatiotemporal patterns of S<sub>dro</sub> across the global land during 1982–2020. We found that S<sub>dro</sub> was higher in dry regions in comparison to humid regions, and grasslands showed the highest S<sub>dro</sub> while forests showed the lowest one. Temporally, the overall S<sub>dro</sub> increased first and then decreased over past four decades. More than 55 % of global vegetated areas experienced a conversion from an increased trend to a declined trend in S<sub>dro</sub>, which concentrated in humid regions. The potential driving mechanisms of these converted S<sub>dro</sub> trends were mostly related to climate changes and varied regionally, with VPD in northern Europe, temperature in middle Africa, and precipitation in western America and northern India. Our findings underscore a shifted trend in vulnerability of terrestrial ecosystems to drought especially in global humid regions.</div></div>\",\"PeriodicalId\":50839,\"journal\":{\"name\":\"Agricultural and Forest Meteorology\",\"volume\":\"362 \",\"pages\":\"Article 110388\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agricultural and Forest Meteorology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168192325000085\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325000085","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Shifted trend in drought sensitivity of vegetation productivity from 1982 to 2020
Drought has imposed severe effects on vegetation productivity, and such impacts will continue to increase under ongoing climate change. However, long-term changes in vegetation sensitivity to drought (Sdro) remain poorly understood. Here, with satellite-based vegetation indexes (kNDVI and LAI) and soil moisture dataset, we investigated the spatiotemporal patterns of Sdro across the global land during 1982–2020. We found that Sdro was higher in dry regions in comparison to humid regions, and grasslands showed the highest Sdro while forests showed the lowest one. Temporally, the overall Sdro increased first and then decreased over past four decades. More than 55 % of global vegetated areas experienced a conversion from an increased trend to a declined trend in Sdro, which concentrated in humid regions. The potential driving mechanisms of these converted Sdro trends were mostly related to climate changes and varied regionally, with VPD in northern Europe, temperature in middle Africa, and precipitation in western America and northern India. Our findings underscore a shifted trend in vulnerability of terrestrial ecosystems to drought especially in global humid regions.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.