{"title":"热色膨胀的热效应","authors":"Vahid Kamali and Rudnei O. Ramos","doi":"10.1088/1475-7516/2025/01/048","DOIUrl":null,"url":null,"abstract":"We explore a model of a pseudo-Nambu-Goldstone boson inflaton field coupled to a non-Abelian SU(2) gauge field. This model naturally leads to a warm inflation scenario, where the inflationary dynamics is dominated by thermal dissipation. In this work, we consider a scenario where the inflaton, an axion-like field, is coupled to the SU(2) gauge field, similar to chromoinflation models. Both the inflaton and the gauge field with a non-vanishing vacuum expectation value are coupled to a thermal radiation bath. We demonstrate that the presence of the thermal bath during warm chromoinflation induces a thermal plasma mass for the background gauge field. This thermal mass can significantly disrupt the dynamics of the background gauge field, thereby driving it to its trivial null solution.","PeriodicalId":15445,"journal":{"name":"Journal of Cosmology and Astroparticle Physics","volume":"482 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal effects on warm chromoinflation\",\"authors\":\"Vahid Kamali and Rudnei O. Ramos\",\"doi\":\"10.1088/1475-7516/2025/01/048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore a model of a pseudo-Nambu-Goldstone boson inflaton field coupled to a non-Abelian SU(2) gauge field. This model naturally leads to a warm inflation scenario, where the inflationary dynamics is dominated by thermal dissipation. In this work, we consider a scenario where the inflaton, an axion-like field, is coupled to the SU(2) gauge field, similar to chromoinflation models. Both the inflaton and the gauge field with a non-vanishing vacuum expectation value are coupled to a thermal radiation bath. We demonstrate that the presence of the thermal bath during warm chromoinflation induces a thermal plasma mass for the background gauge field. This thermal mass can significantly disrupt the dynamics of the background gauge field, thereby driving it to its trivial null solution.\",\"PeriodicalId\":15445,\"journal\":{\"name\":\"Journal of Cosmology and Astroparticle Physics\",\"volume\":\"482 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cosmology and Astroparticle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1475-7516/2025/01/048\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cosmology and Astroparticle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1475-7516/2025/01/048","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
We explore a model of a pseudo-Nambu-Goldstone boson inflaton field coupled to a non-Abelian SU(2) gauge field. This model naturally leads to a warm inflation scenario, where the inflationary dynamics is dominated by thermal dissipation. In this work, we consider a scenario where the inflaton, an axion-like field, is coupled to the SU(2) gauge field, similar to chromoinflation models. Both the inflaton and the gauge field with a non-vanishing vacuum expectation value are coupled to a thermal radiation bath. We demonstrate that the presence of the thermal bath during warm chromoinflation induces a thermal plasma mass for the background gauge field. This thermal mass can significantly disrupt the dynamics of the background gauge field, thereby driving it to its trivial null solution.
期刊介绍:
Journal of Cosmology and Astroparticle Physics (JCAP) encompasses theoretical, observational and experimental areas as well as computation and simulation. The journal covers the latest developments in the theory of all fundamental interactions and their cosmological implications (e.g. M-theory and cosmology, brane cosmology). JCAP''s coverage also includes topics such as formation, dynamics and clustering of galaxies, pre-galactic star formation, x-ray astronomy, radio astronomy, gravitational lensing, active galactic nuclei, intergalactic and interstellar matter.