药物使用与焦虑和抑郁中不同的微生物特征有关

IF 9.6 1区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Psychiatry Pub Date : 2025-01-10 DOI:10.1038/s41380-024-02857-2
Amanda Hazel Dilmore, Rayus Kuplicki, Daniel McDonald, Megha Kumar, Mehrbod Estaki, Nicholas Youngblut, Alexander Tyakht, Gail Ackermann, Colette Blach, Siamak MahmoudianDehkordi, Boadie W. Dunlop, Sudeepa Bhattacharyya, Salvador Guinjoan, Pooja Mandaviya, Ruth E. Ley, Rima Kaddaruh-Dauok, Martin P. Paulus, Rob Knight
{"title":"药物使用与焦虑和抑郁中不同的微生物特征有关","authors":"Amanda Hazel Dilmore, Rayus Kuplicki, Daniel McDonald, Megha Kumar, Mehrbod Estaki, Nicholas Youngblut, Alexander Tyakht, Gail Ackermann, Colette Blach, Siamak MahmoudianDehkordi, Boadie W. Dunlop, Sudeepa Bhattacharyya, Salvador Guinjoan, Pooja Mandaviya, Ruth E. Ley, Rima Kaddaruh-Dauok, Martin P. Paulus, Rob Knight","doi":"10.1038/s41380-024-02857-2","DOIUrl":null,"url":null,"abstract":"<p>This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing (16S) and shallow shotgun sequencing (WGS) were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and Neurocomputational Mechanisms of Affiliation and Personality Study Center for Biomedical Research Excellence (NeuroMAP CoBRE) cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. Though the effect sizes were larger in females than males, similar trends emerged for both sexes. These findings encourage future research on the gut microbiota’s role in NPD and its interactions with pharmacological treatments.</p>","PeriodicalId":19008,"journal":{"name":"Molecular Psychiatry","volume":"24 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Medication use is associated with distinct microbial features in anxiety and depression\",\"authors\":\"Amanda Hazel Dilmore, Rayus Kuplicki, Daniel McDonald, Megha Kumar, Mehrbod Estaki, Nicholas Youngblut, Alexander Tyakht, Gail Ackermann, Colette Blach, Siamak MahmoudianDehkordi, Boadie W. Dunlop, Sudeepa Bhattacharyya, Salvador Guinjoan, Pooja Mandaviya, Ruth E. Ley, Rima Kaddaruh-Dauok, Martin P. Paulus, Rob Knight\",\"doi\":\"10.1038/s41380-024-02857-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing (16S) and shallow shotgun sequencing (WGS) were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and Neurocomputational Mechanisms of Affiliation and Personality Study Center for Biomedical Research Excellence (NeuroMAP CoBRE) cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. Though the effect sizes were larger in females than males, similar trends emerged for both sexes. These findings encourage future research on the gut microbiota’s role in NPD and its interactions with pharmacological treatments.</p>\",\"PeriodicalId\":19008,\"journal\":{\"name\":\"Molecular Psychiatry\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41380-024-02857-2\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41380-024-02857-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究调查了肠道微生物群与神经精神疾病(npd)之间的关系,特别是焦虑症(ANXD)和/或重度抑郁症(MDD),根据精神疾病诊断与统计手册(DSM)-IV或V标准定义。该研究还检查了药物使用的影响,特别是抗抑郁药和/或抗焦虑药,通过解剖治疗化学(ATC)分类系统分类,对肠道微生物群的影响。采用16S rRNA基因扩增子测序(16S)和浅层霰弹枪测序(WGS)对来自Tulsa-1000和生物医学研究卓越性研究中心(NeuroMAP CoBRE)队列的666份粪便样本的DNA进行提取。结果显示,药物使用的显著影响;抗抑郁药的使用与肠道微生物群多样性的显著差异相关,并且比NPD诊断具有更大的效应量。接下来,特定的微生物与ANXD和MDD相关,强调了它们在非药物干预方面的潜力。最后,该研究证明了随机森林分类器能够从微生物谱中预测NPD的诊断和药物使用,这为使用肠道微生物群作为NPD的生物标志物提供了一个有希望的方向。尽管女性的效应量大于男性,但男女之间也出现了类似的趋势。这些发现鼓励了未来对肠道微生物群在NPD中的作用及其与药物治疗的相互作用的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Medication use is associated with distinct microbial features in anxiety and depression

This study investigated the relationship between gut microbiota and neuropsychiatric disorders (NPDs), specifically anxiety disorder (ANXD) and/or major depressive disorder (MDD), as defined by Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV or V criteria. The study also examined the influence of medication use, particularly antidepressants and/or anxiolytics, classified through the Anatomical Therapeutic Chemical (ATC) Classification System, on the gut microbiota. Both 16S rRNA gene amplicon sequencing (16S) and shallow shotgun sequencing (WGS) were performed on DNA extracted from 666 fecal samples from the Tulsa-1000 and Neurocomputational Mechanisms of Affiliation and Personality Study Center for Biomedical Research Excellence (NeuroMAP CoBRE) cohorts. The results highlight the significant influence of medication use; antidepressant use is associated with significant differences in gut microbiota beta diversity and has a larger effect size than NPD diagnosis. Next, specific microbes were associated with ANXD and MDD, highlighting their potential for non-pharmacological intervention. Finally, the study demonstrated the capability of Random Forest classifiers to predict diagnoses of NPD and medication use from microbial profiles, suggesting a promising direction for the use of gut microbiota as biomarkers for NPD. Though the effect sizes were larger in females than males, similar trends emerged for both sexes. These findings encourage future research on the gut microbiota’s role in NPD and its interactions with pharmacological treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Psychiatry
Molecular Psychiatry 医学-精神病学
CiteScore
20.50
自引率
4.50%
发文量
459
审稿时长
4-8 weeks
期刊介绍: Molecular Psychiatry focuses on publishing research that aims to uncover the biological mechanisms behind psychiatric disorders and their treatment. The journal emphasizes studies that bridge pre-clinical and clinical research, covering cellular, molecular, integrative, clinical, imaging, and psychopharmacology levels.
期刊最新文献
Gestational autoantibody exposure impacts early brain development in a rat model of MAR autism The role of plasma inflammatory markers in late-life depression and conversion to dementia: a 3-year follow-up study βIV spectrin abundancy, cellular distribution and sensitivity to AKT/GSK3 regulation in schizophrenia Correction: Probing the genetic and molecular correlates of connectome alterations in obsessive-compulsive disorder. Maternal immune activation imprints translational dysregulation and differential MAP2 phosphorylation in descendant neural stem cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1