MAGPIE:一种机器学习方法来破译人类血浆中蛋白质-蛋白质相互作用。

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2025-01-07 DOI:10.1021/acs.jproteome.4c00160
Emily Hashimoto-Roth, Diane Forget, Vanessa P Gaspar, Steffany A L Bennett, Marie-Soleil Gauthier, Benoit Coulombe, Mathieu Lavallée-Adam
{"title":"MAGPIE:一种机器学习方法来破译人类血浆中蛋白质-蛋白质相互作用。","authors":"Emily Hashimoto-Roth, Diane Forget, Vanessa P Gaspar, Steffany A L Bennett, Marie-Soleil Gauthier, Benoit Coulombe, Mathieu Lavallée-Adam","doi":"10.1021/acs.jproteome.4c00160","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoprecipitation coupled to tandem mass spectrometry (IP-MS/MS) methods are often used to identify protein-protein interactions (PPIs). While these approaches are prone to false positive identifications through contamination and antibody nonspecific binding, their results can be filtered using negative controls and computational modeling. However, such filtering does not effectively detect false-positive interactions when IP-MS/MS is performed on human plasma samples. Therein, proteins cannot be overexpressed or inhibited, and existing modeling algorithms are not adapted for execution without such controls. Hence, we introduce MAGPIE, a novel machine learning-based approach for identifying PPIs in human plasma using IP-MS/MS, which leverages negative controls that include antibodies targeting proteins not expected to be present in human plasma. A set of negative controls used for false positive interaction modeling is first constructed. MAGPIE then assesses the reliability of PPIs detected in IP-MS/MS experiments using antibodies that target known plasma proteins. When applied to five IP-MS/MS experiments as a proof of concept, our algorithm identified 68 PPIs with an FDR of 20.77%. MAGPIE significantly outperformed a state-of-the-art PPI discovery tool and identified known and predicted PPIs. Our approach provides an unprecedented ability to detect human plasma PPIs, which enables a better understanding of biological processes in plasma.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MAGPIE: A Machine Learning Approach to Decipher Protein-Protein Interactions in Human Plasma.\",\"authors\":\"Emily Hashimoto-Roth, Diane Forget, Vanessa P Gaspar, Steffany A L Bennett, Marie-Soleil Gauthier, Benoit Coulombe, Mathieu Lavallée-Adam\",\"doi\":\"10.1021/acs.jproteome.4c00160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunoprecipitation coupled to tandem mass spectrometry (IP-MS/MS) methods are often used to identify protein-protein interactions (PPIs). While these approaches are prone to false positive identifications through contamination and antibody nonspecific binding, their results can be filtered using negative controls and computational modeling. However, such filtering does not effectively detect false-positive interactions when IP-MS/MS is performed on human plasma samples. Therein, proteins cannot be overexpressed or inhibited, and existing modeling algorithms are not adapted for execution without such controls. Hence, we introduce MAGPIE, a novel machine learning-based approach for identifying PPIs in human plasma using IP-MS/MS, which leverages negative controls that include antibodies targeting proteins not expected to be present in human plasma. A set of negative controls used for false positive interaction modeling is first constructed. MAGPIE then assesses the reliability of PPIs detected in IP-MS/MS experiments using antibodies that target known plasma proteins. When applied to five IP-MS/MS experiments as a proof of concept, our algorithm identified 68 PPIs with an FDR of 20.77%. MAGPIE significantly outperformed a state-of-the-art PPI discovery tool and identified known and predicted PPIs. Our approach provides an unprecedented ability to detect human plasma PPIs, which enables a better understanding of biological processes in plasma.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00160\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00160","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

免疫沉淀耦合串联质谱(IP-MS/MS)方法通常用于鉴定蛋白质-蛋白质相互作用(PPIs)。虽然这些方法容易因污染和抗体非特异性结合而产生假阳性鉴定,但它们的结果可以使用阴性对照和计算模型进行过滤。然而,当对人血浆样品进行IP-MS/MS时,这种过滤不能有效地检测假阳性相互作用。其中,蛋白质不能过表达或抑制,并且现有的建模算法不适合在没有此类控制的情况下执行。因此,我们引入了MAGPIE,这是一种新的基于机器学习的方法,用于使用IP-MS/MS识别人类血浆中的ppi,该方法利用阴性对照,包括针对人类血浆中不存在的蛋白质的抗体。首先构造了一组用于假阳性交互建模的负控制。然后,MAGPIE使用针对已知血浆蛋白的抗体,评估IP-MS/MS实验中检测到的ppi的可靠性。当应用于5个IP-MS/MS实验作为概念验证时,我们的算法识别出68个ppi, FDR为20.77%。MAGPIE明显优于最先进的PPI发现工具,并识别已知和预测PPI。我们的方法提供了一种前所未有的检测人类血浆PPIs的能力,这使得更好地理解血浆中的生物过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MAGPIE: A Machine Learning Approach to Decipher Protein-Protein Interactions in Human Plasma.

Immunoprecipitation coupled to tandem mass spectrometry (IP-MS/MS) methods are often used to identify protein-protein interactions (PPIs). While these approaches are prone to false positive identifications through contamination and antibody nonspecific binding, their results can be filtered using negative controls and computational modeling. However, such filtering does not effectively detect false-positive interactions when IP-MS/MS is performed on human plasma samples. Therein, proteins cannot be overexpressed or inhibited, and existing modeling algorithms are not adapted for execution without such controls. Hence, we introduce MAGPIE, a novel machine learning-based approach for identifying PPIs in human plasma using IP-MS/MS, which leverages negative controls that include antibodies targeting proteins not expected to be present in human plasma. A set of negative controls used for false positive interaction modeling is first constructed. MAGPIE then assesses the reliability of PPIs detected in IP-MS/MS experiments using antibodies that target known plasma proteins. When applied to five IP-MS/MS experiments as a proof of concept, our algorithm identified 68 PPIs with an FDR of 20.77%. MAGPIE significantly outperformed a state-of-the-art PPI discovery tool and identified known and predicted PPIs. Our approach provides an unprecedented ability to detect human plasma PPIs, which enables a better understanding of biological processes in plasma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
MARLOWE: An Untargeted Proteomics, Statistical Approach to Taxonomic Classification for Forensics. Cysteine-Directed Isobaric Labeling Combined with GeLC-FAIMS-MS for Quantitative Top-Down Proteomics. OpenMS WebApps: Building User-Friendly Solutions for MS Analysis. Proteomic Analysis of Unicellular Cyanobacterium Crocosphaera subtropica ATCC 51142 under Extended Light or Dark Growth. Investigation of Immunoreactivity Profiles and Epitope Landscape in Divergent COVID-19 Trajectories and SARS-CoV-2 Variants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1