Rima Bharadwaj, Amer M Alanazi, Vivek Dhar Dwivedi, Sarad Kumar Mishra
{"title":"结合机器学习和结构动力学探索b细胞淋巴瘤-2抑制剂治疗慢性淋巴细胞白血病。","authors":"Rima Bharadwaj, Amer M Alanazi, Vivek Dhar Dwivedi, Sarad Kumar Mishra","doi":"10.1007/s11030-024-11079-1","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds. Among these, 13 compounds within the most common substructure (MCS1) cluster showed promising features and were prioritized. A docking-based re-evaluation highlighted four lead compounds-ChEMBL464268, ChEMBL480009, ChEMBL464440, and ChEMBL518858-exhibiting notable binding affinities. Although a reference molecule outperformed in docking, molecular dynamics (MD), and binding energy analyses, it failed ADME and Lipinski criteria, unlike the selected leads. Further validation through MD simulations and MM/GBSA energy calculations confirmed stable binding interactions for the leads, with ChEMBL464268 showing the highest stability and binding affinity (ΔGtotal = - 80.35 ± 11.51 kcal/mol). Free energy landscape (FEL) analysis revealed stable energy minima for these complexes, underscoring conformational stability. Despite moderate activity (pIC₅₀ values from 4.3 to 5.82), the favorable pharmacokinetic profiles of these compounds position them as promising BCL-2 inhibitor leads, with ChEMBL464268 emerging as the most promising candidate for further CLL therapeutic development.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning and structural dynamics to explore B-cell lymphoma-2 inhibitors for chronic lymphocytic leukemia therapy.\",\"authors\":\"Rima Bharadwaj, Amer M Alanazi, Vivek Dhar Dwivedi, Sarad Kumar Mishra\",\"doi\":\"10.1007/s11030-024-11079-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds. Among these, 13 compounds within the most common substructure (MCS1) cluster showed promising features and were prioritized. A docking-based re-evaluation highlighted four lead compounds-ChEMBL464268, ChEMBL480009, ChEMBL464440, and ChEMBL518858-exhibiting notable binding affinities. Although a reference molecule outperformed in docking, molecular dynamics (MD), and binding energy analyses, it failed ADME and Lipinski criteria, unlike the selected leads. Further validation through MD simulations and MM/GBSA energy calculations confirmed stable binding interactions for the leads, with ChEMBL464268 showing the highest stability and binding affinity (ΔGtotal = - 80.35 ± 11.51 kcal/mol). Free energy landscape (FEL) analysis revealed stable energy minima for these complexes, underscoring conformational stability. Despite moderate activity (pIC₅₀ values from 4.3 to 5.82), the favorable pharmacokinetic profiles of these compounds position them as promising BCL-2 inhibitor leads, with ChEMBL464268 emerging as the most promising candidate for further CLL therapeutic development.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11079-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11079-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
慢性淋巴细胞白血病(CLL)是一种由抗凋亡蛋白b细胞淋巴瘤-2 (BCL-2)过表达引起的恶性肿瘤,使其成为重要的治疗靶点。该研究将计算筛选、分子对接和分子动力学结合起来,从ChEMBL数据库中鉴定和验证新的BCL-2抑制剂。从836个BCL-2抑制剂开始,我们进行了ADME和Lipinski's Rule of Five (RO5)过滤、聚类、最大共同子结构(MCS)分析和机器学习模型(Random Forest、SVM和ANN),得到了124个化合物的精细化集。其中,最常见亚结构(MCS1)簇中的13个化合物表现出有希望的特征,并被优先考虑。基于对接的重新评估强调了四个先导化合物chembl464268, ChEMBL480009, ChEMBL464440和chembl518858具有显著的结合亲和力。虽然参考分子在对接、分子动力学(MD)和结合能分析方面表现优异,但与选定的先导物不同,它未能达到ADME和Lipinski标准。通过MD模拟和MM/GBSA能量计算进一步验证了引线的稳定结合相互作用,ChEMBL464268表现出最高的稳定性和结合亲和力(ΔGtotal = - 80.35±11.51 kcal/mol)。自由能景观(FEL)分析揭示了这些配合物的稳定能量最小值,强调了构象的稳定性。尽管活性适中(pIC₅0值从4.3到5.82),但这些化合物的有利药代动力学特征使它们成为有希望的BCL-2抑制剂先导物,其中ChEMBL464268成为进一步CLL治疗开发的最有希望的候选物。
Integrating machine learning and structural dynamics to explore B-cell lymphoma-2 inhibitors for chronic lymphocytic leukemia therapy.
Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds. Among these, 13 compounds within the most common substructure (MCS1) cluster showed promising features and were prioritized. A docking-based re-evaluation highlighted four lead compounds-ChEMBL464268, ChEMBL480009, ChEMBL464440, and ChEMBL518858-exhibiting notable binding affinities. Although a reference molecule outperformed in docking, molecular dynamics (MD), and binding energy analyses, it failed ADME and Lipinski criteria, unlike the selected leads. Further validation through MD simulations and MM/GBSA energy calculations confirmed stable binding interactions for the leads, with ChEMBL464268 showing the highest stability and binding affinity (ΔGtotal = - 80.35 ± 11.51 kcal/mol). Free energy landscape (FEL) analysis revealed stable energy minima for these complexes, underscoring conformational stability. Despite moderate activity (pIC₅₀ values from 4.3 to 5.82), the favorable pharmacokinetic profiles of these compounds position them as promising BCL-2 inhibitor leads, with ChEMBL464268 emerging as the most promising candidate for further CLL therapeutic development.
期刊介绍:
Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including:
combinatorial chemistry and parallel synthesis;
small molecule libraries;
microwave synthesis;
flow synthesis;
fluorous synthesis;
diversity oriented synthesis (DOS);
nanoreactors;
click chemistry;
multiplex technologies;
fragment- and ligand-based design;
structure/function/SAR;
computational chemistry and molecular design;
chemoinformatics;
screening techniques and screening interfaces;
analytical and purification methods;
robotics, automation and miniaturization;
targeted libraries;
display libraries;
peptides and peptoids;
proteins;
oligonucleotides;
carbohydrates;
natural diversity;
new methods of library formulation and deconvolution;
directed evolution, origin of life and recombination;
search techniques, landscapes, random chemistry and more;