结合机器学习和结构动力学探索b细胞淋巴瘤-2抑制剂治疗慢性淋巴细胞白血病。

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2025-01-09 DOI:10.1007/s11030-024-11079-1
Rima Bharadwaj, Amer M Alanazi, Vivek Dhar Dwivedi, Sarad Kumar Mishra
{"title":"结合机器学习和结构动力学探索b细胞淋巴瘤-2抑制剂治疗慢性淋巴细胞白血病。","authors":"Rima Bharadwaj, Amer M Alanazi, Vivek Dhar Dwivedi, Sarad Kumar Mishra","doi":"10.1007/s11030-024-11079-1","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds. Among these, 13 compounds within the most common substructure (MCS1) cluster showed promising features and were prioritized. A docking-based re-evaluation highlighted four lead compounds-ChEMBL464268, ChEMBL480009, ChEMBL464440, and ChEMBL518858-exhibiting notable binding affinities. Although a reference molecule outperformed in docking, molecular dynamics (MD), and binding energy analyses, it failed ADME and Lipinski criteria, unlike the selected leads. Further validation through MD simulations and MM/GBSA energy calculations confirmed stable binding interactions for the leads, with ChEMBL464268 showing the highest stability and binding affinity (ΔGtotal = - 80.35 ± 11.51 kcal/mol). Free energy landscape (FEL) analysis revealed stable energy minima for these complexes, underscoring conformational stability. Despite moderate activity (pIC₅₀ values from 4.3 to 5.82), the favorable pharmacokinetic profiles of these compounds position them as promising BCL-2 inhibitor leads, with ChEMBL464268 emerging as the most promising candidate for further CLL therapeutic development.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating machine learning and structural dynamics to explore B-cell lymphoma-2 inhibitors for chronic lymphocytic leukemia therapy.\",\"authors\":\"Rima Bharadwaj, Amer M Alanazi, Vivek Dhar Dwivedi, Sarad Kumar Mishra\",\"doi\":\"10.1007/s11030-024-11079-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds. Among these, 13 compounds within the most common substructure (MCS1) cluster showed promising features and were prioritized. A docking-based re-evaluation highlighted four lead compounds-ChEMBL464268, ChEMBL480009, ChEMBL464440, and ChEMBL518858-exhibiting notable binding affinities. Although a reference molecule outperformed in docking, molecular dynamics (MD), and binding energy analyses, it failed ADME and Lipinski criteria, unlike the selected leads. Further validation through MD simulations and MM/GBSA energy calculations confirmed stable binding interactions for the leads, with ChEMBL464268 showing the highest stability and binding affinity (ΔGtotal = - 80.35 ± 11.51 kcal/mol). Free energy landscape (FEL) analysis revealed stable energy minima for these complexes, underscoring conformational stability. Despite moderate activity (pIC₅₀ values from 4.3 to 5.82), the favorable pharmacokinetic profiles of these compounds position them as promising BCL-2 inhibitor leads, with ChEMBL464268 emerging as the most promising candidate for further CLL therapeutic development.</p>\",\"PeriodicalId\":708,\"journal\":{\"name\":\"Molecular Diversity\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Diversity\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s11030-024-11079-1\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11079-1","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

慢性淋巴细胞白血病(CLL)是一种由抗凋亡蛋白b细胞淋巴瘤-2 (BCL-2)过表达引起的恶性肿瘤,使其成为重要的治疗靶点。该研究将计算筛选、分子对接和分子动力学结合起来,从ChEMBL数据库中鉴定和验证新的BCL-2抑制剂。从836个BCL-2抑制剂开始,我们进行了ADME和Lipinski's Rule of Five (RO5)过滤、聚类、最大共同子结构(MCS)分析和机器学习模型(Random Forest、SVM和ANN),得到了124个化合物的精细化集。其中,最常见亚结构(MCS1)簇中的13个化合物表现出有希望的特征,并被优先考虑。基于对接的重新评估强调了四个先导化合物chembl464268, ChEMBL480009, ChEMBL464440和chembl518858具有显著的结合亲和力。虽然参考分子在对接、分子动力学(MD)和结合能分析方面表现优异,但与选定的先导物不同,它未能达到ADME和Lipinski标准。通过MD模拟和MM/GBSA能量计算进一步验证了引线的稳定结合相互作用,ChEMBL464268表现出最高的稳定性和结合亲和力(ΔGtotal = - 80.35±11.51 kcal/mol)。自由能景观(FEL)分析揭示了这些配合物的稳定能量最小值,强调了构象的稳定性。尽管活性适中(pIC₅0值从4.3到5.82),但这些化合物的有利药代动力学特征使它们成为有希望的BCL-2抑制剂先导物,其中ChEMBL464268成为进一步CLL治疗开发的最有希望的候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrating machine learning and structural dynamics to explore B-cell lymphoma-2 inhibitors for chronic lymphocytic leukemia therapy.

Chronic lymphocytic leukemia (CLL) is a malignancy caused by the overexpression of the anti-apoptotic protein B-cell lymphoma-2 (BCL-2), making it a critical therapeutic target. This study integrates computational screening, molecular docking, and molecular dynamics to identify and validate novel BCL-2 inhibitors from the ChEMBL database. Starting with 836 BCL-2 inhibitors, we performed ADME and Lipinski's Rule of Five (RO5) filtering, clustering, maximum common substructure (MCS) analysis, and machine learning models (Random Forest, SVM, and ANN), yielding a refined set of 124 compounds. Among these, 13 compounds within the most common substructure (MCS1) cluster showed promising features and were prioritized. A docking-based re-evaluation highlighted four lead compounds-ChEMBL464268, ChEMBL480009, ChEMBL464440, and ChEMBL518858-exhibiting notable binding affinities. Although a reference molecule outperformed in docking, molecular dynamics (MD), and binding energy analyses, it failed ADME and Lipinski criteria, unlike the selected leads. Further validation through MD simulations and MM/GBSA energy calculations confirmed stable binding interactions for the leads, with ChEMBL464268 showing the highest stability and binding affinity (ΔGtotal = - 80.35 ± 11.51 kcal/mol). Free energy landscape (FEL) analysis revealed stable energy minima for these complexes, underscoring conformational stability. Despite moderate activity (pIC₅₀ values from 4.3 to 5.82), the favorable pharmacokinetic profiles of these compounds position them as promising BCL-2 inhibitor leads, with ChEMBL464268 emerging as the most promising candidate for further CLL therapeutic development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Synthesis and antifungal activity of arecoline derivatives containing amino acid fragments. Discovery of selective ROCK2 inhibitors with free radical scavenging ability for the treatment of gouty arthritis. Targeting cyclin-dependent kinase 11: a computational approach for natural anti-cancer compound discovery. Synthesis and biological evaluation of rationally designed pyrazoles as insecticidal agents. Optimizing kinase and PARP inhibitor combinations through machine learning and in silico approaches for targeted brain cancer therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1