识别功能依赖下的因果关系。

IF 2.1 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Entropy Pub Date : 2024-12-06 DOI:10.3390/e26121061
Yizuo Chen, Adnan Darwiche
{"title":"识别功能依赖下的因果关系。","authors":"Yizuo Chen, Adnan Darwiche","doi":"10.3390/e26121061","DOIUrl":null,"url":null,"abstract":"<p><p>We study the identification of causal effects, motivated by two improvements to identifiability that can be attained if one knows that some variables in a causal graph are functionally determined by their parents (without needing to know the specific functions). First, an unidentifiable causal effect may become identifiable when certain variables are functional. Secondly, certain functional variables can be excluded from being observed without affecting the identifiability of a causal effect, which may significantly reduce the number of needed variables in observational data. Our results are largely based on an elimination procedure that removes functional variables from a causal graph while preserving key properties in the resulting causal graph, including the identifiability of causal effects. Our treatment of functional dependencies in this context mandates a formal, systematic, and general treatment of positivity assumptions, which are prevalent in the literature on causal effect identifiability and which interact with functional dependencies, leading to another contribution of the presented work.</p>","PeriodicalId":11694,"journal":{"name":"Entropy","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675407/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identifying Causal Effects Under Functional Dependencies.\",\"authors\":\"Yizuo Chen, Adnan Darwiche\",\"doi\":\"10.3390/e26121061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the identification of causal effects, motivated by two improvements to identifiability that can be attained if one knows that some variables in a causal graph are functionally determined by their parents (without needing to know the specific functions). First, an unidentifiable causal effect may become identifiable when certain variables are functional. Secondly, certain functional variables can be excluded from being observed without affecting the identifiability of a causal effect, which may significantly reduce the number of needed variables in observational data. Our results are largely based on an elimination procedure that removes functional variables from a causal graph while preserving key properties in the resulting causal graph, including the identifiability of causal effects. Our treatment of functional dependencies in this context mandates a formal, systematic, and general treatment of positivity assumptions, which are prevalent in the literature on causal effect identifiability and which interact with functional dependencies, leading to another contribution of the presented work.</p>\",\"PeriodicalId\":11694,\"journal\":{\"name\":\"Entropy\",\"volume\":\"26 12\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11675407/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entropy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3390/e26121061\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entropy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/e26121061","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们研究因果效应的识别,动机是对可识别性的两个改进,如果知道因果图中的一些变量在功能上是由它们的父母决定的(不需要知道具体的函数),就可以获得可识别性。首先,当某些变量起作用时,无法识别的因果效应可能变得可以识别。其次,某些功能变量可以在不影响因果关系的可识别性的情况下被排除在观测之外,这可能会显著减少观测数据中所需变量的数量。我们的结果很大程度上基于消除程序,该程序从因果图中删除功能变量,同时保留结果因果图中的关键属性,包括因果效应的可识别性。在这种情况下,我们对功能依赖的处理要求对积极假设进行正式、系统和一般的处理,积极假设在因果关系可识别性的文献中很普遍,并且与功能依赖相互作用,这导致了本文的另一个贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Causal Effects Under Functional Dependencies.

We study the identification of causal effects, motivated by two improvements to identifiability that can be attained if one knows that some variables in a causal graph are functionally determined by their parents (without needing to know the specific functions). First, an unidentifiable causal effect may become identifiable when certain variables are functional. Secondly, certain functional variables can be excluded from being observed without affecting the identifiability of a causal effect, which may significantly reduce the number of needed variables in observational data. Our results are largely based on an elimination procedure that removes functional variables from a causal graph while preserving key properties in the resulting causal graph, including the identifiability of causal effects. Our treatment of functional dependencies in this context mandates a formal, systematic, and general treatment of positivity assumptions, which are prevalent in the literature on causal effect identifiability and which interact with functional dependencies, leading to another contribution of the presented work.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Entropy
Entropy PHYSICS, MULTIDISCIPLINARY-
CiteScore
4.90
自引率
11.10%
发文量
1580
审稿时长
21.05 days
期刊介绍: Entropy (ISSN 1099-4300), an international and interdisciplinary journal of entropy and information studies, publishes reviews, regular research papers and short notes. Our aim is to encourage scientists to publish as much as possible their theoretical and experimental details. There is no restriction on the length of the papers. If there are computation and the experiment, the details must be provided so that the results can be reproduced.
期刊最新文献
Control of Inhibition-Stabilized Oscillations in Wilson-Cowan Networks with Homeostatic Plasticity. Fault Root Cause Analysis Based on Liang-Kleeman Information Flow and Graphical Lasso. Lacunary Series and Strong Approximation. Research on Development Progress and Test Evaluation of Post-Quantum Cryptography. Exploring Causal Network Complexity in Industrial Linkages: A Comparative Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1