屈光不正和近视的非编码rna和增强子的全基因组扫描。

IF 3.8 2区 生物学 Q2 GENETICS & HEREDITY Human Genetics Pub Date : 2025-01-01 Epub Date: 2025-01-08 DOI:10.1007/s00439-024-02721-x
Milly S Tedja, Joanna Swierkowska-Janc, Clair A Enthoven, Magda A Meester-Smoor, Pirro G Hysi, Janine F Felix, Cameron S Cowan, Timothy J Cherry, Peter J van der Spek, Mohsen Ghanbari, Stefan J Erkeland, Tahsin Stefan Barakat, Caroline C W Klaver, Virginie J M Verhoeven
{"title":"屈光不正和近视的非编码rna和增强子的全基因组扫描。","authors":"Milly S Tedja, Joanna Swierkowska-Janc, Clair A Enthoven, Magda A Meester-Smoor, Pirro G Hysi, Janine F Felix, Cameron S Cowan, Timothy J Cherry, Peter J van der Spek, Mohsen Ghanbari, Stefan J Erkeland, Tahsin Stefan Barakat, Caroline C W Klaver, Virginie J M Verhoeven","doi":"10.1007/s00439-024-02721-x","DOIUrl":null,"url":null,"abstract":"<p><p>Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches. We performed a genetic association study between variants in non-coding RNAs and enhancers, and RE and myopia. We obtained single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes, miRNA-binding sites, long non-coding RNAs genes (lncRNAs) and enhancers from publicly available databases: miRNASNPv2, PolymiRTS, VISTA Enhancer Browser, FANTOM5 and lncRNASNP2. We investigated whether SNPs overlapping these elements were associated with RE and myopia leveraged from a large GWAS meta-analysis (N = 160,420). With genetic risk scores (GRSs) per element, we investigated the joint effect of associated variants on RE, axial length (AL)/corneal radius (CR), and AL progression in an independent child cohort, the Generation R Study (N = 3638 children). We constructed a score for biological plausibility per SNP in highly confident miRNA-binding sites and enhancers in chromatin accessible regions. We found that SNPs in two miRNA genes, 14 enhancers and 81 lncRNA genes in chromatin accessible regions and 54 highly confident miRNA-binding sites, were in RE and myopia-associated loci. GRSs from SNPs in enhancers were significantly associated with RE, AL/CR and AL progression. GRSs from lncRNAs were significantly associated with all AL/CR and AL progression. GRSs from miRNAs were not associated with any ocular biometric measurement. GRSs from miRNA-binding sites showed suggestive but inconsistent significance. We prioritized candidate miRNA binding sites and candidate enhancers for future functional validation. Pathways of target and host genes of highly ranked variants included eye development (BMP4, MPPED2), neurogenesis (DDIT4, NTM), extracellular matrix (ANTXR2, BMP3), photoreceptor metabolism (DNAJB12), photoreceptor morphogenesis (CHDR1), neural signaling (VIPR2) and TGF-beta signaling (ANAPC16). This is the first large-scale study of non-coding RNAs and enhancers for RE and myopia. Enhancers and lncRNAs could be of large importance as they are associated with childhood myopia. We provide a confident blueprint for future functional validation by prioritizing candidate miRNA binding sites and candidate enhancers.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"67-91"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754329/pdf/","citationCount":"0","resultStr":"{\"title\":\"A genome-wide scan of non-coding RNAs and enhancers for refractive error and myopia.\",\"authors\":\"Milly S Tedja, Joanna Swierkowska-Janc, Clair A Enthoven, Magda A Meester-Smoor, Pirro G Hysi, Janine F Felix, Cameron S Cowan, Timothy J Cherry, Peter J van der Spek, Mohsen Ghanbari, Stefan J Erkeland, Tahsin Stefan Barakat, Caroline C W Klaver, Virginie J M Verhoeven\",\"doi\":\"10.1007/s00439-024-02721-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches. We performed a genetic association study between variants in non-coding RNAs and enhancers, and RE and myopia. We obtained single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes, miRNA-binding sites, long non-coding RNAs genes (lncRNAs) and enhancers from publicly available databases: miRNASNPv2, PolymiRTS, VISTA Enhancer Browser, FANTOM5 and lncRNASNP2. We investigated whether SNPs overlapping these elements were associated with RE and myopia leveraged from a large GWAS meta-analysis (N = 160,420). With genetic risk scores (GRSs) per element, we investigated the joint effect of associated variants on RE, axial length (AL)/corneal radius (CR), and AL progression in an independent child cohort, the Generation R Study (N = 3638 children). We constructed a score for biological plausibility per SNP in highly confident miRNA-binding sites and enhancers in chromatin accessible regions. We found that SNPs in two miRNA genes, 14 enhancers and 81 lncRNA genes in chromatin accessible regions and 54 highly confident miRNA-binding sites, were in RE and myopia-associated loci. GRSs from SNPs in enhancers were significantly associated with RE, AL/CR and AL progression. GRSs from lncRNAs were significantly associated with all AL/CR and AL progression. GRSs from miRNAs were not associated with any ocular biometric measurement. GRSs from miRNA-binding sites showed suggestive but inconsistent significance. We prioritized candidate miRNA binding sites and candidate enhancers for future functional validation. Pathways of target and host genes of highly ranked variants included eye development (BMP4, MPPED2), neurogenesis (DDIT4, NTM), extracellular matrix (ANTXR2, BMP3), photoreceptor metabolism (DNAJB12), photoreceptor morphogenesis (CHDR1), neural signaling (VIPR2) and TGF-beta signaling (ANAPC16). This is the first large-scale study of non-coding RNAs and enhancers for RE and myopia. Enhancers and lncRNAs could be of large importance as they are associated with childhood myopia. We provide a confident blueprint for future functional validation by prioritizing candidate miRNA binding sites and candidate enhancers.</p>\",\"PeriodicalId\":13175,\"journal\":{\"name\":\"Human Genetics\",\"volume\":\" \",\"pages\":\"67-91\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754329/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00439-024-02721-x\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02721-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

屈光不正(RE)和近视是复杂的多基因疾病,大多数全基因组相关的遗传变异位于非外显子区域。考虑到这一点,以及在儿童时期发病,基因调控有望在其发病机制中发挥重要作用。这促使我们探索超越传统的基因发现方法。我们进行了一项非编码rna和增强子变异与RE和近视之间的遗传关联研究。我们从miRNASNPv2、PolymiRTS、VISTA Enhancer Browser、FANTOM5和lncRNASNP2等公开数据库中获得了microRNA (miRNA)基因、miRNA结合位点、长链非编码rna基因(lncRNAs)和增强子的单核苷酸多态性(snp)。我们通过一项大型GWAS荟萃分析(N = 160420)调查了重叠这些元素的snp是否与RE和近视相关。通过每个元素的遗传风险评分(GRSs),我们研究了相关变异对RE、轴向长度(AL)/角膜半径(CR)和AL进展的共同影响,在一个独立的儿童队列中,R世代研究(N = 3638名儿童)。我们在染色质可及区域高度自信的mirna结合位点和增强子中构建了每个SNP的生物学合理性评分。我们发现两个miRNA基因,染色质可及区域的14个增强子和81个lncRNA基因以及54个高度自信的miRNA结合位点的snp位于RE和近视相关位点。来自增强子snp的GRSs与RE、AL/CR和AL进展显著相关。lncrna的GRSs与所有AL/CR和AL进展显著相关。来自mirna的GRSs与任何眼部生物测量无关。来自mirna结合位点的GRSs显示了暗示性但不一致的意义。我们优先考虑候选miRNA结合位点和候选增强子,以进行未来的功能验证。高排名变异的靶基因和宿主基因通路包括眼睛发育(BMP4、MPPED2)、神经发生(DDIT4、NTM)、细胞外基质(ANTXR2、BMP3)、光感受器代谢(DNAJB12)、光感受器形态发生(CHDR1)、神经信号(VIPR2)和tgf - β信号(ANAPC16)。这是第一次大规模研究非编码rna和RE和近视的增强子。增强子和lncrna可能非常重要,因为它们与儿童近视有关。我们通过优先考虑候选miRNA结合位点和候选增强子,为未来的功能验证提供了一个自信的蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A genome-wide scan of non-coding RNAs and enhancers for refractive error and myopia.

Refractive error (RE) and myopia are complex polygenic conditions with the majority of genome-wide associated genetic variants in non-exonic regions. Given this, and the onset during childhood, gene-regulation is expected to play an important role in its pathogenesis. This prompted us to explore beyond traditional gene finding approaches. We performed a genetic association study between variants in non-coding RNAs and enhancers, and RE and myopia. We obtained single-nucleotide polymorphisms (SNPs) in microRNA (miRNA) genes, miRNA-binding sites, long non-coding RNAs genes (lncRNAs) and enhancers from publicly available databases: miRNASNPv2, PolymiRTS, VISTA Enhancer Browser, FANTOM5 and lncRNASNP2. We investigated whether SNPs overlapping these elements were associated with RE and myopia leveraged from a large GWAS meta-analysis (N = 160,420). With genetic risk scores (GRSs) per element, we investigated the joint effect of associated variants on RE, axial length (AL)/corneal radius (CR), and AL progression in an independent child cohort, the Generation R Study (N = 3638 children). We constructed a score for biological plausibility per SNP in highly confident miRNA-binding sites and enhancers in chromatin accessible regions. We found that SNPs in two miRNA genes, 14 enhancers and 81 lncRNA genes in chromatin accessible regions and 54 highly confident miRNA-binding sites, were in RE and myopia-associated loci. GRSs from SNPs in enhancers were significantly associated with RE, AL/CR and AL progression. GRSs from lncRNAs were significantly associated with all AL/CR and AL progression. GRSs from miRNAs were not associated with any ocular biometric measurement. GRSs from miRNA-binding sites showed suggestive but inconsistent significance. We prioritized candidate miRNA binding sites and candidate enhancers for future functional validation. Pathways of target and host genes of highly ranked variants included eye development (BMP4, MPPED2), neurogenesis (DDIT4, NTM), extracellular matrix (ANTXR2, BMP3), photoreceptor metabolism (DNAJB12), photoreceptor morphogenesis (CHDR1), neural signaling (VIPR2) and TGF-beta signaling (ANAPC16). This is the first large-scale study of non-coding RNAs and enhancers for RE and myopia. Enhancers and lncRNAs could be of large importance as they are associated with childhood myopia. We provide a confident blueprint for future functional validation by prioritizing candidate miRNA binding sites and candidate enhancers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Genetics
Human Genetics 生物-遗传学
CiteScore
10.80
自引率
3.80%
发文量
94
审稿时长
1 months
期刊介绍: Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology. Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted. The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.
期刊最新文献
Evaluating predictors of kinase activity of STK11 variants identified in primary human non-small cell lung cancers. Unilateral, bilateral symmetric or asymmetric isolated hearing loss in patients with heterozygous KITLG variants. Global dysregulation of circular RNAs in frontal cortex and whole blood from DM1 and DM2. An augmented transformer model trained on protein family specific variant data leads to improved prediction of variants of uncertain significance. Conventional and genetic association between migraine and stroke with druggable genome-wide Mendelian randomization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1