Abir Troudi Habibi, Ines Ben Alaya, Fatima Tensaouti, Eloïse Baudou, Germain Arribarat, Lisa Pollidoro, Patrice Péran, Yves Chaix, Salam Labidi, Anne Laprie
{"title":"静息状态功能磁共振成像和神经束造影对儿童后窝肿瘤治疗对工作记忆束的影响。","authors":"Abir Troudi Habibi, Ines Ben Alaya, Fatima Tensaouti, Eloïse Baudou, Germain Arribarat, Lisa Pollidoro, Patrice Péran, Yves Chaix, Salam Labidi, Anne Laprie","doi":"10.1111/jon.70007","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Working memory, a primary cognitive domain, is often impaired in pediatric brain tumor survivors, affecting their attention and processing speed. This study investigated the long-term effects of treatments, including surgery, radiotherapy (RT), and chemotherapy (CT), on working memory tracts in children with posterior fossa tumors (PFTs) using resting-state functional MRI (rs-fMRI) and diffusion MRI tractography.</p><p><strong>Methods: </strong>This study included 16 medulloblastoma (MB) survivors treated with postoperative RT and CT, 14 pilocytic astrocytoma (PA) survivors treated with surgery alone, and 16 healthy controls from the Imaging Memory after Pediatric Cancer in children, adolescents, and young adults study (NCT04324450). Working memory tracts were identified by combining seed masks from rs-fMRI maps and whole-brain tractography from diffusion MRI. Connectivity alterations were assessed qualitatively and quantitatively, alongside neuropsychological evaluations and correlations with behavioral outcomes and mean supratentorial dose.</p><p><strong>Results: </strong>Compared to controls, MB survivors exhibited significant impairments in the working memory network, including reductions in tract volume (TV), fiber density, fiber cross-section (FC), mean streamline length (MLS), and fractional anisotropy (FA) (all p = 0.04). Lower working memory scores were correlated with reduced TV and FA in MB survivors. Higher mean supratentorial doses were associated with lower TV, FC, and FA values across multiple tracts, particularly in the arcuate and superior longitudinal fasciculi.</p><p><strong>Conclusions: </strong>Tractography-derived features highlighted white matter damage as a biomarker of treatment-related neurotoxicity in PFTs survivors. These findings underscore the detrimental impact of RT and CT on working memory networks and emphasize the importance of preserving cognitive function during treatment planning.</p>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"35 1","pages":"e70007"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Pediatric Posterior Fossa Tumor Treatments on Working Memory Tracts Using Resting-State fMRI and Tractography.\",\"authors\":\"Abir Troudi Habibi, Ines Ben Alaya, Fatima Tensaouti, Eloïse Baudou, Germain Arribarat, Lisa Pollidoro, Patrice Péran, Yves Chaix, Salam Labidi, Anne Laprie\",\"doi\":\"10.1111/jon.70007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and purpose: </strong>Working memory, a primary cognitive domain, is often impaired in pediatric brain tumor survivors, affecting their attention and processing speed. This study investigated the long-term effects of treatments, including surgery, radiotherapy (RT), and chemotherapy (CT), on working memory tracts in children with posterior fossa tumors (PFTs) using resting-state functional MRI (rs-fMRI) and diffusion MRI tractography.</p><p><strong>Methods: </strong>This study included 16 medulloblastoma (MB) survivors treated with postoperative RT and CT, 14 pilocytic astrocytoma (PA) survivors treated with surgery alone, and 16 healthy controls from the Imaging Memory after Pediatric Cancer in children, adolescents, and young adults study (NCT04324450). Working memory tracts were identified by combining seed masks from rs-fMRI maps and whole-brain tractography from diffusion MRI. Connectivity alterations were assessed qualitatively and quantitatively, alongside neuropsychological evaluations and correlations with behavioral outcomes and mean supratentorial dose.</p><p><strong>Results: </strong>Compared to controls, MB survivors exhibited significant impairments in the working memory network, including reductions in tract volume (TV), fiber density, fiber cross-section (FC), mean streamline length (MLS), and fractional anisotropy (FA) (all p = 0.04). Lower working memory scores were correlated with reduced TV and FA in MB survivors. Higher mean supratentorial doses were associated with lower TV, FC, and FA values across multiple tracts, particularly in the arcuate and superior longitudinal fasciculi.</p><p><strong>Conclusions: </strong>Tractography-derived features highlighted white matter damage as a biomarker of treatment-related neurotoxicity in PFTs survivors. These findings underscore the detrimental impact of RT and CT on working memory networks and emphasize the importance of preserving cognitive function during treatment planning.</p>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"35 1\",\"pages\":\"e70007\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/jon.70007\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/jon.70007","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Impact of Pediatric Posterior Fossa Tumor Treatments on Working Memory Tracts Using Resting-State fMRI and Tractography.
Background and purpose: Working memory, a primary cognitive domain, is often impaired in pediatric brain tumor survivors, affecting their attention and processing speed. This study investigated the long-term effects of treatments, including surgery, radiotherapy (RT), and chemotherapy (CT), on working memory tracts in children with posterior fossa tumors (PFTs) using resting-state functional MRI (rs-fMRI) and diffusion MRI tractography.
Methods: This study included 16 medulloblastoma (MB) survivors treated with postoperative RT and CT, 14 pilocytic astrocytoma (PA) survivors treated with surgery alone, and 16 healthy controls from the Imaging Memory after Pediatric Cancer in children, adolescents, and young adults study (NCT04324450). Working memory tracts were identified by combining seed masks from rs-fMRI maps and whole-brain tractography from diffusion MRI. Connectivity alterations were assessed qualitatively and quantitatively, alongside neuropsychological evaluations and correlations with behavioral outcomes and mean supratentorial dose.
Results: Compared to controls, MB survivors exhibited significant impairments in the working memory network, including reductions in tract volume (TV), fiber density, fiber cross-section (FC), mean streamline length (MLS), and fractional anisotropy (FA) (all p = 0.04). Lower working memory scores were correlated with reduced TV and FA in MB survivors. Higher mean supratentorial doses were associated with lower TV, FC, and FA values across multiple tracts, particularly in the arcuate and superior longitudinal fasciculi.
Conclusions: Tractography-derived features highlighted white matter damage as a biomarker of treatment-related neurotoxicity in PFTs survivors. These findings underscore the detrimental impact of RT and CT on working memory networks and emphasize the importance of preserving cognitive function during treatment planning.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!