{"title":"脂肪酸、胰岛素和运动在血管健康中的相互作用。","authors":"Kara C Anderson, Jia Liu, Zhenqi Liu","doi":"10.1186/s12944-024-02421-5","DOIUrl":null,"url":null,"abstract":"<p><p>Fatty acid metabolism, exercise, and insulin action play critical roles in maintaining vascular health, especially relevant in metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. Insulin, a vasoactive hormone, induces arterial vasodilation throughout the arterial tree, increasing arterial compliance and enhancing tissue perfusion. These effects, however, are impaired in individuals with obesity and type 2 diabetes, and evidence suggests that vascular insulin resistance contributes to the pathogenesis of type 2 diabetes and its cardiovascular complications. Elevated plasma levels of free fatty acids in people with insulin resistance engender vascular inflammation, endothelial dysfunction, and vascular insulin resistance. Importantly, these effects are both functionally and structurally dependent, with saturated fatty acids as the primary culprits, while polyunsaturated fatty acids may support insulin sensitivity and endothelial function. Exercise enhances fatty acid oxidation, reduces circulating free fatty acids, and improves insulin sensitivity, thereby mitigating lipotoxicity and promoting endothelial function. Additionally, exercise induces beneficial vascular adaptations. This review examines the complex interplay among fatty acid metabolism, exercise training-induced vascular adaptations, and insulin-mediated vascular changes, highlighting their collective impact on vascular health and underlying mechanisms in both healthy and insulin-resistant states. It also explores the therapeutic potential of targeted exercise prescriptions and fatty acid-focused dietary strategies for enhancing vascular health, emphasizing tailored interventions to maximize metabolic benefits. Future research should investigate the pathways linking fatty acid metabolism to vascular insulin resistance, with a focus on how exercise and dietary modifications can be personalized to enhance vascular insulin sensitivity, optimize vascular health, and reduce the risks of type 2 diabetes and associated cardiovascular complications.</p>","PeriodicalId":18073,"journal":{"name":"Lipids in Health and Disease","volume":"24 1","pages":"4"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706162/pdf/","citationCount":"0","resultStr":"{\"title\":\"Interplay of fatty acids, insulin and exercise in vascular health.\",\"authors\":\"Kara C Anderson, Jia Liu, Zhenqi Liu\",\"doi\":\"10.1186/s12944-024-02421-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fatty acid metabolism, exercise, and insulin action play critical roles in maintaining vascular health, especially relevant in metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. Insulin, a vasoactive hormone, induces arterial vasodilation throughout the arterial tree, increasing arterial compliance and enhancing tissue perfusion. These effects, however, are impaired in individuals with obesity and type 2 diabetes, and evidence suggests that vascular insulin resistance contributes to the pathogenesis of type 2 diabetes and its cardiovascular complications. Elevated plasma levels of free fatty acids in people with insulin resistance engender vascular inflammation, endothelial dysfunction, and vascular insulin resistance. Importantly, these effects are both functionally and structurally dependent, with saturated fatty acids as the primary culprits, while polyunsaturated fatty acids may support insulin sensitivity and endothelial function. Exercise enhances fatty acid oxidation, reduces circulating free fatty acids, and improves insulin sensitivity, thereby mitigating lipotoxicity and promoting endothelial function. Additionally, exercise induces beneficial vascular adaptations. This review examines the complex interplay among fatty acid metabolism, exercise training-induced vascular adaptations, and insulin-mediated vascular changes, highlighting their collective impact on vascular health and underlying mechanisms in both healthy and insulin-resistant states. It also explores the therapeutic potential of targeted exercise prescriptions and fatty acid-focused dietary strategies for enhancing vascular health, emphasizing tailored interventions to maximize metabolic benefits. Future research should investigate the pathways linking fatty acid metabolism to vascular insulin resistance, with a focus on how exercise and dietary modifications can be personalized to enhance vascular insulin sensitivity, optimize vascular health, and reduce the risks of type 2 diabetes and associated cardiovascular complications.</p>\",\"PeriodicalId\":18073,\"journal\":{\"name\":\"Lipids in Health and Disease\",\"volume\":\"24 1\",\"pages\":\"4\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11706162/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lipids in Health and Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12944-024-02421-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids in Health and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12944-024-02421-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Interplay of fatty acids, insulin and exercise in vascular health.
Fatty acid metabolism, exercise, and insulin action play critical roles in maintaining vascular health, especially relevant in metabolic disorders such as obesity, type 2 diabetes, and cardiovascular disease. Insulin, a vasoactive hormone, induces arterial vasodilation throughout the arterial tree, increasing arterial compliance and enhancing tissue perfusion. These effects, however, are impaired in individuals with obesity and type 2 diabetes, and evidence suggests that vascular insulin resistance contributes to the pathogenesis of type 2 diabetes and its cardiovascular complications. Elevated plasma levels of free fatty acids in people with insulin resistance engender vascular inflammation, endothelial dysfunction, and vascular insulin resistance. Importantly, these effects are both functionally and structurally dependent, with saturated fatty acids as the primary culprits, while polyunsaturated fatty acids may support insulin sensitivity and endothelial function. Exercise enhances fatty acid oxidation, reduces circulating free fatty acids, and improves insulin sensitivity, thereby mitigating lipotoxicity and promoting endothelial function. Additionally, exercise induces beneficial vascular adaptations. This review examines the complex interplay among fatty acid metabolism, exercise training-induced vascular adaptations, and insulin-mediated vascular changes, highlighting their collective impact on vascular health and underlying mechanisms in both healthy and insulin-resistant states. It also explores the therapeutic potential of targeted exercise prescriptions and fatty acid-focused dietary strategies for enhancing vascular health, emphasizing tailored interventions to maximize metabolic benefits. Future research should investigate the pathways linking fatty acid metabolism to vascular insulin resistance, with a focus on how exercise and dietary modifications can be personalized to enhance vascular insulin sensitivity, optimize vascular health, and reduce the risks of type 2 diabetes and associated cardiovascular complications.
期刊介绍:
Lipids in Health and Disease is an open access, peer-reviewed, journal that publishes articles on all aspects of lipids: their biochemistry, pharmacology, toxicology, role in health and disease, and the synthesis of new lipid compounds.
Lipids in Health and Disease is aimed at all scientists, health professionals and physicians interested in the area of lipids. Lipids are defined here in their broadest sense, to include: cholesterol, essential fatty acids, saturated fatty acids, phospholipids, inositol lipids, second messenger lipids, enzymes and synthetic machinery that is involved in the metabolism of various lipids in the cells and tissues, and also various aspects of lipid transport, etc. In addition, the journal also publishes research that investigates and defines the role of lipids in various physiological processes, pathology and disease. In particular, the journal aims to bridge the gap between the bench and the clinic by publishing articles that are particularly relevant to human diseases and the role of lipids in the management of various diseases.