儿童糖尿病酮症酸中毒血浆蛋白的差异表达和途径富集。

IF 6 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Medicine Pub Date : 2025-01-07 DOI:10.1186/s10020-024-01056-7
Paolo Spagnolo, Enis Cela, Maitray A Patel, David Tweddell, Mark Daley, Cheril Clarson, Saverio Stranges, Gediminas Cepinskas, Douglas D Fraser
{"title":"儿童糖尿病酮症酸中毒血浆蛋白的差异表达和途径富集。","authors":"Paolo Spagnolo, Enis Cela, Maitray A Patel, David Tweddell, Mark Daley, Cheril Clarson, Saverio Stranges, Gediminas Cepinskas, Douglas D Fraser","doi":"10.1186/s10020-024-01056-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In children with type 1 diabetes (T1D), diabetic ketoacidosis (DKA) triggers a significant inflammatory response; however, the specific effector proteins and signaling pathways involved remain largely unexplored. This pediatric case-control study utilized plasma proteomics to explore protein alterations associated with severe DKA and to identify signaling pathways that associate with clinical variables.</p><p><strong>Methods: </strong>We conducted a proteome analysis of plasma samples from 17 matched pairs of pediatric patients with T1D; one cohort with severe DKA and another with insulin-controlled diabetes. Proximity extension assays were used to quantify 3072 plasma proteins. Data analysis was performed using multivariate statistics, machine learning, and bioinformatics.</p><p><strong>Results: </strong>This study identified 214 differentially expressed proteins (162 upregulated, 52 downregulated; adj P < 0.05 and a fold change > 2), reflecting cellular dysfunction and metabolic stress in severe DKA. We characterized protein expression across various organ systems and cell types, with notable alterations observed in white blood cells. Elevated inflammatory pathways suggest an enhanced inflammatory response, which may contribute to the complications of severe DKA. Additionally, upregulated pathways related to hormone signaling and nitrogen metabolism were identified, consistent with increased hormone release and associated metabolic processes, such as glycogenolysis and lipolysis. Changes in lipid and fatty acid metabolism were also observed, aligning with the lipolysis and ketosis characteristic of severe DKA. Finally, several signaling pathways were associated with clinical biochemical variables.</p><p><strong>Conclusions: </strong>Our findings highlight differentially expressed plasma proteins and enriched signaling pathways that were associated with clinical features, offering insights into the pathophysiology of severe DKA.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"4"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707870/pdf/","citationCount":"0","resultStr":"{\"title\":\"Differential expression of plasma proteins and pathway enrichments in pediatric diabetic ketoacidosis.\",\"authors\":\"Paolo Spagnolo, Enis Cela, Maitray A Patel, David Tweddell, Mark Daley, Cheril Clarson, Saverio Stranges, Gediminas Cepinskas, Douglas D Fraser\",\"doi\":\"10.1186/s10020-024-01056-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>In children with type 1 diabetes (T1D), diabetic ketoacidosis (DKA) triggers a significant inflammatory response; however, the specific effector proteins and signaling pathways involved remain largely unexplored. This pediatric case-control study utilized plasma proteomics to explore protein alterations associated with severe DKA and to identify signaling pathways that associate with clinical variables.</p><p><strong>Methods: </strong>We conducted a proteome analysis of plasma samples from 17 matched pairs of pediatric patients with T1D; one cohort with severe DKA and another with insulin-controlled diabetes. Proximity extension assays were used to quantify 3072 plasma proteins. Data analysis was performed using multivariate statistics, machine learning, and bioinformatics.</p><p><strong>Results: </strong>This study identified 214 differentially expressed proteins (162 upregulated, 52 downregulated; adj P < 0.05 and a fold change > 2), reflecting cellular dysfunction and metabolic stress in severe DKA. We characterized protein expression across various organ systems and cell types, with notable alterations observed in white blood cells. Elevated inflammatory pathways suggest an enhanced inflammatory response, which may contribute to the complications of severe DKA. Additionally, upregulated pathways related to hormone signaling and nitrogen metabolism were identified, consistent with increased hormone release and associated metabolic processes, such as glycogenolysis and lipolysis. Changes in lipid and fatty acid metabolism were also observed, aligning with the lipolysis and ketosis characteristic of severe DKA. Finally, several signaling pathways were associated with clinical biochemical variables.</p><p><strong>Conclusions: </strong>Our findings highlight differentially expressed plasma proteins and enriched signaling pathways that were associated with clinical features, offering insights into the pathophysiology of severe DKA.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":\"31 1\",\"pages\":\"4\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11707870/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-01056-7\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-01056-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:在1型糖尿病(T1D)患儿中,糖尿病酮症酸中毒(DKA)引发显著的炎症反应;然而,具体的效应蛋白和所涉及的信号通路在很大程度上仍未被探索。这项儿童病例对照研究利用血浆蛋白质组学来探索与严重DKA相关的蛋白质改变,并确定与临床变量相关的信号通路。方法:对17对匹配的T1D患儿血浆样本进行蛋白质组学分析;一组患有严重DKA,另一组患有胰岛素控制糖尿病。采用接近延伸法定量3072个血浆蛋白。使用多元统计、机器学习和生物信息学进行数据分析。结果:本研究鉴定出214个差异表达蛋白(162个上调,52个下调;2),反映重度DKA的细胞功能障碍和代谢应激。我们描述了不同器官系统和细胞类型的蛋白表达,在白细胞中观察到显著的变化。升高的炎症通路表明炎症反应增强,这可能导致严重DKA的并发症。此外,还发现了与激素信号传导和氮代谢相关的上调通路,这与激素释放增加和相关代谢过程(如糖原分解和脂肪分解)一致。脂质和脂肪酸代谢的变化也被观察到,与严重DKA的脂肪分解和酮症特征一致。最后,几种信号通路与临床生化变量相关。结论:我们的研究结果突出了与临床特征相关的差异表达血浆蛋白和丰富的信号通路,为严重DKA的病理生理学提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential expression of plasma proteins and pathway enrichments in pediatric diabetic ketoacidosis.

Background: In children with type 1 diabetes (T1D), diabetic ketoacidosis (DKA) triggers a significant inflammatory response; however, the specific effector proteins and signaling pathways involved remain largely unexplored. This pediatric case-control study utilized plasma proteomics to explore protein alterations associated with severe DKA and to identify signaling pathways that associate with clinical variables.

Methods: We conducted a proteome analysis of plasma samples from 17 matched pairs of pediatric patients with T1D; one cohort with severe DKA and another with insulin-controlled diabetes. Proximity extension assays were used to quantify 3072 plasma proteins. Data analysis was performed using multivariate statistics, machine learning, and bioinformatics.

Results: This study identified 214 differentially expressed proteins (162 upregulated, 52 downregulated; adj P < 0.05 and a fold change > 2), reflecting cellular dysfunction and metabolic stress in severe DKA. We characterized protein expression across various organ systems and cell types, with notable alterations observed in white blood cells. Elevated inflammatory pathways suggest an enhanced inflammatory response, which may contribute to the complications of severe DKA. Additionally, upregulated pathways related to hormone signaling and nitrogen metabolism were identified, consistent with increased hormone release and associated metabolic processes, such as glycogenolysis and lipolysis. Changes in lipid and fatty acid metabolism were also observed, aligning with the lipolysis and ketosis characteristic of severe DKA. Finally, several signaling pathways were associated with clinical biochemical variables.

Conclusions: Our findings highlight differentially expressed plasma proteins and enriched signaling pathways that were associated with clinical features, offering insights into the pathophysiology of severe DKA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Medicine
Molecular Medicine 医学-生化与分子生物学
CiteScore
8.60
自引率
0.00%
发文量
137
审稿时长
1 months
期刊介绍: Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.
期刊最新文献
Formononetin ameliorates polycystic ovary syndrome through suppressing NLRP3 inflammasome. Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain. Nobiletin restores the intestinal barrier of HFD-induced obese mice by promoting MHC-II expression and lipid metabolism. Disrupting of IGF2BP3-stabilized CLDN11 mRNA by TNF-α increases intestinal permeability in obesity-related severe acute pancreatitis. AdipoR1 enhances the radiation resistance via ESR1/CCNB1IP1/cyclin B1 pathway in hepatocellular carcinoma cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1