{"title":"鼠尾草酸抗乳腺癌作用的体外研究。","authors":"Aylar Borhan, Ali Bagherlou, Mohammad B Ghayour","doi":"10.1016/j.tice.2024.102718","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10).</p><p><strong>Materials and methods: </strong>The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA. The process of programmed cell death was investigated by utilizing Annexin V/PI staining, measuring caspase-3/7 activity, and real-time PCR for apoptotic gene expression. Reactive oxygen species (ROS) were also assessed to determine the extent of oxidative stress.</p><p><strong>Results: </strong>CA significantly decreased the viability of MCF-7 and MDA-MB-231 cells depending on the dosage, with CA-FA exhibiting enhanced cytotoxicity, particularly in MDA-MB-231 cells. The evaluation of IC₅₀ confirmed that conjugation with FA reduced the IC₅₀ of CA. Apoptosis analysis demonstrated increased apoptosis rates in MCF-7 and MDA-MB-231 cells exposed to treatment with CA and CA-FA, while MCA10 cells showed minimal effects. Caspase-3/7 activity was notably higher in CA-FA-treated cells. Gene expression analysis revealed elevated pro-apoptotic gene activity and reduced anti-apoptotic gene activity, with CA-FA having a more pronounced effect. Cells subjected to CA-FA treatment exhibited a significant increase in ROS levels.</p><p><strong>Conclusion: </strong>These findings suggest that CA conjugation with FA enhances its cytotoxic effects and promotes apoptosis through increased apoptosis and ROS production. The research emphasizes the promise of CA-FA as a focused treatment approach for aggressive forms of breast cancer, underscoring the need for additional exploration of its practical uses in clinical settings.</p>","PeriodicalId":23201,"journal":{"name":"Tissue & cell","volume":"93 ","pages":"102718"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating the anticancer effects of carnosic acid against breast cancer: An In Vitro investigation.\",\"authors\":\"Aylar Borhan, Ali Bagherlou, Mohammad B Ghayour\",\"doi\":\"10.1016/j.tice.2024.102718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10).</p><p><strong>Materials and methods: </strong>The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA. The process of programmed cell death was investigated by utilizing Annexin V/PI staining, measuring caspase-3/7 activity, and real-time PCR for apoptotic gene expression. Reactive oxygen species (ROS) were also assessed to determine the extent of oxidative stress.</p><p><strong>Results: </strong>CA significantly decreased the viability of MCF-7 and MDA-MB-231 cells depending on the dosage, with CA-FA exhibiting enhanced cytotoxicity, particularly in MDA-MB-231 cells. The evaluation of IC₅₀ confirmed that conjugation with FA reduced the IC₅₀ of CA. Apoptosis analysis demonstrated increased apoptosis rates in MCF-7 and MDA-MB-231 cells exposed to treatment with CA and CA-FA, while MCA10 cells showed minimal effects. Caspase-3/7 activity was notably higher in CA-FA-treated cells. Gene expression analysis revealed elevated pro-apoptotic gene activity and reduced anti-apoptotic gene activity, with CA-FA having a more pronounced effect. Cells subjected to CA-FA treatment exhibited a significant increase in ROS levels.</p><p><strong>Conclusion: </strong>These findings suggest that CA conjugation with FA enhances its cytotoxic effects and promotes apoptosis through increased apoptosis and ROS production. The research emphasizes the promise of CA-FA as a focused treatment approach for aggressive forms of breast cancer, underscoring the need for additional exploration of its practical uses in clinical settings.</p>\",\"PeriodicalId\":23201,\"journal\":{\"name\":\"Tissue & cell\",\"volume\":\"93 \",\"pages\":\"102718\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue & cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tice.2024.102718\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue & cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tice.2024.102718","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Evaluating the anticancer effects of carnosic acid against breast cancer: An In Vitro investigation.
Background: Carnosic acid (CA) has potential anti-cancer properties, but its effectiveness can be improved by combining it with Folic acid (FA). This research aimed to evaluate the impact of CA and CA-FA conjugate on breast cancer cell lines (MCF-7, MDA-MB-231, and MCA10).
Materials and methods: The viability of the cell lines was measured using the MTT assay, and the IC₅₀ was determined to compare the cytotoxicity of CA and CA-FA. The process of programmed cell death was investigated by utilizing Annexin V/PI staining, measuring caspase-3/7 activity, and real-time PCR for apoptotic gene expression. Reactive oxygen species (ROS) were also assessed to determine the extent of oxidative stress.
Results: CA significantly decreased the viability of MCF-7 and MDA-MB-231 cells depending on the dosage, with CA-FA exhibiting enhanced cytotoxicity, particularly in MDA-MB-231 cells. The evaluation of IC₅₀ confirmed that conjugation with FA reduced the IC₅₀ of CA. Apoptosis analysis demonstrated increased apoptosis rates in MCF-7 and MDA-MB-231 cells exposed to treatment with CA and CA-FA, while MCA10 cells showed minimal effects. Caspase-3/7 activity was notably higher in CA-FA-treated cells. Gene expression analysis revealed elevated pro-apoptotic gene activity and reduced anti-apoptotic gene activity, with CA-FA having a more pronounced effect. Cells subjected to CA-FA treatment exhibited a significant increase in ROS levels.
Conclusion: These findings suggest that CA conjugation with FA enhances its cytotoxic effects and promotes apoptosis through increased apoptosis and ROS production. The research emphasizes the promise of CA-FA as a focused treatment approach for aggressive forms of breast cancer, underscoring the need for additional exploration of its practical uses in clinical settings.
期刊介绍:
Tissue and Cell is devoted to original research on the organization of cells, subcellular and extracellular components at all levels, including the grouping and interrelations of cells in tissues and organs. The journal encourages submission of ultrastructural studies that provide novel insights into structure, function and physiology of cells and tissues, in health and disease. Bioengineering and stem cells studies focused on the description of morphological and/or histological data are also welcomed.
Studies investigating the effect of compounds and/or substances on structure of cells and tissues are generally outside the scope of this journal. For consideration, studies should contain a clear rationale on the use of (a) given substance(s), have a compelling morphological and structural focus and present novel incremental findings from previous literature.