{"title":"牦牛粪便中一株芽孢杆菌的鉴定及生物活性分析。","authors":"Qiang Ma, Xin Xiang, Yan Ma, Guangzhi Li, Xingyu Liu, Boai Jia, Wenlin Yang, Hengxia Yin, Benyin Zhang","doi":"10.3390/antibiotics13121238","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> The identification of novel bacterial species from the intestines of yaks residing on the Qinghai-Tibet Plateau is pivotal in advancing our understanding of host-microbiome interactions and represents a promising avenue for microbial drug discovery. <b>Methods:</b> In this study, we conducted a polyphasic taxonomic analysis and bioactive assays on a <i>Bacillus</i> strain, designated Bos-x6-28, isolated from yak feces. <b>Results:</b> The findings revealed that strain Bos-x6-28 shares a high 16S rRNA gene sequence similarity (98.91%) with <i>B. xiamenensis</i> HYC-10<sup>T</sup> and <i>B. zhangzhouensis</i> DW5-4<sup>T</sup>, suggesting close phylogenetic affinity. Physiological and biochemical characterizations demonstrated that Bos-x6-28 could utilize nine carbon sources, including D-galactose, inositol, and fructose, alongside nine nitrogen sources, such as threonine, alanine, and proline. Analysis of biochemical markers indicated that Bos-x6-28's cell wall hydrolysates contained mannose, glucose, and meso-2,6-diaminopimelic acid, while menaquinone-7 (MK-7), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylglycerol (DPG) were found in the cell membrane. The primary cellular fatty acids included C16:0 (28.00%), cyclo-C17:0 (19.97%), C14:0 (8.75%), cyclo-C19:0 (8.52%), iso-C15:0 (5.49%), anteiso-C15:0 (4.61%), and C12:0 (3.15%). Whole-genome sequencing identified a genome size of 3.33 Mbp with 3353 coding genes. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses confirmed Bos-x6-28 as a novel species, hereby named <i>B. maqinnsis</i> Bos-x6-28 (MCCC 1K09379). Further genomic analysis unveiled biosynthetic gene clusters encoding bioactive natural compounds, including β-lactones, sactipeptides, fengycin, and lichenysin analogs. Additionally, in vitro assays demonstrated that this strain exhibits antibacterial and cytotoxic activities. <b>Conclusions:</b> These findings collectively indicate the novel <i>Bacillus</i> species <i>B. maqinnsis</i> Bos-x6-28 as a promising source for novel antibiotic and antitumor agents.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"13 12","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672612/pdf/","citationCount":"0","resultStr":"{\"title\":\"Identification and Bioactivity Analysis of a Novel <i>Bacillus</i> Species, <i>B. maqinnsis</i> sp. nov. Bos-x6-28, Isolated from Feces of the Yak (<i>Bos grunniens</i>).\",\"authors\":\"Qiang Ma, Xin Xiang, Yan Ma, Guangzhi Li, Xingyu Liu, Boai Jia, Wenlin Yang, Hengxia Yin, Benyin Zhang\",\"doi\":\"10.3390/antibiotics13121238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> The identification of novel bacterial species from the intestines of yaks residing on the Qinghai-Tibet Plateau is pivotal in advancing our understanding of host-microbiome interactions and represents a promising avenue for microbial drug discovery. <b>Methods:</b> In this study, we conducted a polyphasic taxonomic analysis and bioactive assays on a <i>Bacillus</i> strain, designated Bos-x6-28, isolated from yak feces. <b>Results:</b> The findings revealed that strain Bos-x6-28 shares a high 16S rRNA gene sequence similarity (98.91%) with <i>B. xiamenensis</i> HYC-10<sup>T</sup> and <i>B. zhangzhouensis</i> DW5-4<sup>T</sup>, suggesting close phylogenetic affinity. Physiological and biochemical characterizations demonstrated that Bos-x6-28 could utilize nine carbon sources, including D-galactose, inositol, and fructose, alongside nine nitrogen sources, such as threonine, alanine, and proline. Analysis of biochemical markers indicated that Bos-x6-28's cell wall hydrolysates contained mannose, glucose, and meso-2,6-diaminopimelic acid, while menaquinone-7 (MK-7), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylglycerol (DPG) were found in the cell membrane. The primary cellular fatty acids included C16:0 (28.00%), cyclo-C17:0 (19.97%), C14:0 (8.75%), cyclo-C19:0 (8.52%), iso-C15:0 (5.49%), anteiso-C15:0 (4.61%), and C12:0 (3.15%). Whole-genome sequencing identified a genome size of 3.33 Mbp with 3353 coding genes. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses confirmed Bos-x6-28 as a novel species, hereby named <i>B. maqinnsis</i> Bos-x6-28 (MCCC 1K09379). Further genomic analysis unveiled biosynthetic gene clusters encoding bioactive natural compounds, including β-lactones, sactipeptides, fengycin, and lichenysin analogs. Additionally, in vitro assays demonstrated that this strain exhibits antibacterial and cytotoxic activities. <b>Conclusions:</b> These findings collectively indicate the novel <i>Bacillus</i> species <i>B. maqinnsis</i> Bos-x6-28 as a promising source for novel antibiotic and antitumor agents.</p>\",\"PeriodicalId\":54246,\"journal\":{\"name\":\"Antibiotics-Basel\",\"volume\":\"13 12\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672612/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibiotics-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antibiotics13121238\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics13121238","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Identification and Bioactivity Analysis of a Novel Bacillus Species, B. maqinnsis sp. nov. Bos-x6-28, Isolated from Feces of the Yak (Bos grunniens).
Background: The identification of novel bacterial species from the intestines of yaks residing on the Qinghai-Tibet Plateau is pivotal in advancing our understanding of host-microbiome interactions and represents a promising avenue for microbial drug discovery. Methods: In this study, we conducted a polyphasic taxonomic analysis and bioactive assays on a Bacillus strain, designated Bos-x6-28, isolated from yak feces. Results: The findings revealed that strain Bos-x6-28 shares a high 16S rRNA gene sequence similarity (98.91%) with B. xiamenensis HYC-10T and B. zhangzhouensis DW5-4T, suggesting close phylogenetic affinity. Physiological and biochemical characterizations demonstrated that Bos-x6-28 could utilize nine carbon sources, including D-galactose, inositol, and fructose, alongside nine nitrogen sources, such as threonine, alanine, and proline. Analysis of biochemical markers indicated that Bos-x6-28's cell wall hydrolysates contained mannose, glucose, and meso-2,6-diaminopimelic acid, while menaquinone-7 (MK-7), phosphatidylethanolamine (PE), phosphatidylcholine (PC), and phosphatidylglycerol (DPG) were found in the cell membrane. The primary cellular fatty acids included C16:0 (28.00%), cyclo-C17:0 (19.97%), C14:0 (8.75%), cyclo-C19:0 (8.52%), iso-C15:0 (5.49%), anteiso-C15:0 (4.61%), and C12:0 (3.15%). Whole-genome sequencing identified a genome size of 3.33 Mbp with 3353 coding genes. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) analyses confirmed Bos-x6-28 as a novel species, hereby named B. maqinnsis Bos-x6-28 (MCCC 1K09379). Further genomic analysis unveiled biosynthetic gene clusters encoding bioactive natural compounds, including β-lactones, sactipeptides, fengycin, and lichenysin analogs. Additionally, in vitro assays demonstrated that this strain exhibits antibacterial and cytotoxic activities. Conclusions: These findings collectively indicate the novel Bacillus species B. maqinnsis Bos-x6-28 as a promising source for novel antibiotic and antitumor agents.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.