Byeong-Seong Kim, Inwoo Hwang, Hyo Rim Ko, Young Kwan Kim, Hee Jin Kim, Sang Won Seo, Yujung Choi, Sungsu Lim, Yun Kyung Kim, Shuke Nie, Keqiang Ye, Jong-Chan Park, Yunjong Lee, Dong-Gyu Jo, Seung Eun Lee, Daesik Kim, Sung-Woo Cho, Jee-Yin Ahn
{"title":"EBP1通过调节γ-分泌酶增强β淀粉样蛋白病理。","authors":"Byeong-Seong Kim, Inwoo Hwang, Hyo Rim Ko, Young Kwan Kim, Hee Jin Kim, Sang Won Seo, Yujung Choi, Sungsu Lim, Yun Kyung Kim, Shuke Nie, Keqiang Ye, Jong-Chan Park, Yunjong Lee, Dong-Gyu Jo, Seung Eun Lee, Daesik Kim, Sung-Woo Cho, Jee-Yin Ahn","doi":"10.1038/s43587-024-00790-1","DOIUrl":null,"url":null,"abstract":"<p><p>The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction. In postmortem brains of patients with AD and 5x-FAD mice, we found that EBP1 is proteolytically cleaved by asparagine endopeptidase at N84 and N204 residues, compromising its inhibitory effect on γ-secretase, increasing Aβ aggregation and neurodegeneration. Accordingly, injection of AAV2-Ebp1 wild-type or an asparagine endopeptidase-uncleavable mutant into the brains of 5x-FAD mice decreased Aβ generation and alleviated the behavioral impairments. Thus, our study suggests that EBP1 acts as an inhibitor of γ-secretase on amyloid precursor protein cleavage and preservation of functional EBP1 could be a therapeutic strategy for AD.</p>","PeriodicalId":94150,"journal":{"name":"Nature aging","volume":" ","pages":""},"PeriodicalIF":17.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EBP1 potentiates amyloid β pathology by regulating γ-secretase.\",\"authors\":\"Byeong-Seong Kim, Inwoo Hwang, Hyo Rim Ko, Young Kwan Kim, Hee Jin Kim, Sang Won Seo, Yujung Choi, Sungsu Lim, Yun Kyung Kim, Shuke Nie, Keqiang Ye, Jong-Chan Park, Yunjong Lee, Dong-Gyu Jo, Seung Eun Lee, Daesik Kim, Sung-Woo Cho, Jee-Yin Ahn\",\"doi\":\"10.1038/s43587-024-00790-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction. In postmortem brains of patients with AD and 5x-FAD mice, we found that EBP1 is proteolytically cleaved by asparagine endopeptidase at N84 and N204 residues, compromising its inhibitory effect on γ-secretase, increasing Aβ aggregation and neurodegeneration. Accordingly, injection of AAV2-Ebp1 wild-type or an asparagine endopeptidase-uncleavable mutant into the brains of 5x-FAD mice decreased Aβ generation and alleviated the behavioral impairments. Thus, our study suggests that EBP1 acts as an inhibitor of γ-secretase on amyloid precursor protein cleavage and preservation of functional EBP1 could be a therapeutic strategy for AD.</p>\",\"PeriodicalId\":94150,\"journal\":{\"name\":\"Nature aging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":17.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature aging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s43587-024-00790-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature aging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43587-024-00790-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
淀粉样蛋白β (a β)的异常沉积在阿尔茨海默病(AD)的神经病理学中起关键作用,该沉积是由淀粉样蛋白前体蛋白的蛋白水解裂解事件产生的,涉及蛋白酶γ-分泌酶并随后聚合成淀粉样斑块。在这里,我们发现ErbB3结合蛋白1 (EBP1)/增殖相关2G4 (PA2G4)与γ分泌酶的催化亚基早老素相互作用,抑制a β的产生。缺乏前脑Ebp1/Pa2g4的小鼠再现了迟发性散发性AD的代表性表型,表现出Aβ沉积、淀粉样斑块和认知功能障碍的年龄依赖性增加。在AD患者和5x-FAD小鼠的死后脑中,我们发现EBP1被天冬酰胺内肽酶在N84和N204残基处进行蛋白水解裂解,破坏了其对γ-分泌酶的抑制作用,增加了Aβ聚集和神经变性。因此,在5x-FAD小鼠脑内注射AAV2-Ebp1野生型或天冬酰胺内肽酶不可切割突变体可减少Aβ的产生,减轻行为障碍。因此,我们的研究表明EBP1作为γ-分泌酶对淀粉样蛋白前体蛋白切割的抑制剂,保存功能性EBP1可能是治疗AD的一种策略。
EBP1 potentiates amyloid β pathology by regulating γ-secretase.
The abnormal deposition of amyloid β (Aβ), produced by proteolytic cleavage events of amyloid precursor protein involving the protease γ-secretase and subsequent polymerization into amyloid plaques, plays a key role in the neuropathology of Alzheimer's disease (AD). Here we show that ErbB3 binding protein 1 (EBP1)/proliferation-associated 2G4 (PA2G4) interacts with presenilin, a catalytic subunit of γ-secretase, inhibiting Aβ production. Mice lacking forebrain Ebp1/Pa2g4 recapitulate the representative phenotypes of late-onset sporadic AD, displaying an age-dependent increase in Aβ deposition, amyloid plaques and cognitive dysfunction. In postmortem brains of patients with AD and 5x-FAD mice, we found that EBP1 is proteolytically cleaved by asparagine endopeptidase at N84 and N204 residues, compromising its inhibitory effect on γ-secretase, increasing Aβ aggregation and neurodegeneration. Accordingly, injection of AAV2-Ebp1 wild-type or an asparagine endopeptidase-uncleavable mutant into the brains of 5x-FAD mice decreased Aβ generation and alleviated the behavioral impairments. Thus, our study suggests that EBP1 acts as an inhibitor of γ-secretase on amyloid precursor protein cleavage and preservation of functional EBP1 could be a therapeutic strategy for AD.