基于实验不确定性的多目标贝叶斯主动学习发现新型无铅焊料合金

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2025-01-10 DOI:10.1038/s41524-024-01480-7
Qinghua Wei, Yuanhao Wang, Guo Yang, Tianyuan Li, Shuting Yu, Ziqiang Dong, Tong-Yi Zhang
{"title":"基于实验不确定性的多目标贝叶斯主动学习发现新型无铅焊料合金","authors":"Qinghua Wei, Yuanhao Wang, Guo Yang, Tianyuan Li, Shuting Yu, Ziqiang Dong, Tong-Yi Zhang","doi":"10.1038/s41524-024-01480-7","DOIUrl":null,"url":null,"abstract":"<p>We present a multi-objective Bayesian active learning strategy, which greatly accelerates the discovery of super high-strength and high-ductility lead-free solder alloys. The active learning strategy demonstrates that a machine learning model will have high generalizability if experimental data uncertainty is included, which greatly improves the model prediction or the material design accuracy. The feature-point-start forward method in multi-objective optimization adopts two Gaussian process regression (GPR) models, one for strength and one for elongation, and their outputs build up the acquisition-function-modified objective space of strength and elongation. Then, Bayesian sampling is applied to design the next experiments by balancing exploitation and exploration. Seven multi-objective active learning iterations discovered two novel super high-strength and high-ductility lead-free solder alloys. After that, various material characterizations were conducted on the two novel solder alloys, and the results exhibited their high performances in melting properties, wettability, electrical conductivity, and shear strength of the solder joint and explored the mechanism of high strength and high ductility of the alloys. The present work systematically analyzes the important role of experimental uncertainty in machine learning, especially in the global optimization for material design, which demands high generalizability of predictions.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"29 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering novel lead-free solder alloy by multi-objective Bayesian active learning with experimental uncertainty\",\"authors\":\"Qinghua Wei, Yuanhao Wang, Guo Yang, Tianyuan Li, Shuting Yu, Ziqiang Dong, Tong-Yi Zhang\",\"doi\":\"10.1038/s41524-024-01480-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a multi-objective Bayesian active learning strategy, which greatly accelerates the discovery of super high-strength and high-ductility lead-free solder alloys. The active learning strategy demonstrates that a machine learning model will have high generalizability if experimental data uncertainty is included, which greatly improves the model prediction or the material design accuracy. The feature-point-start forward method in multi-objective optimization adopts two Gaussian process regression (GPR) models, one for strength and one for elongation, and their outputs build up the acquisition-function-modified objective space of strength and elongation. Then, Bayesian sampling is applied to design the next experiments by balancing exploitation and exploration. Seven multi-objective active learning iterations discovered two novel super high-strength and high-ductility lead-free solder alloys. After that, various material characterizations were conducted on the two novel solder alloys, and the results exhibited their high performances in melting properties, wettability, electrical conductivity, and shear strength of the solder joint and explored the mechanism of high strength and high ductility of the alloys. The present work systematically analyzes the important role of experimental uncertainty in machine learning, especially in the global optimization for material design, which demands high generalizability of predictions.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01480-7\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01480-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种多目标贝叶斯主动学习策略,极大地促进了超高强度、高延展性无铅钎料合金的发现。主动学习策略表明,在考虑实验数据不确定性的情况下,机器学习模型具有较高的泛化能力,大大提高了模型预测或材料设计的精度。多目标优化中的特征点-起点正演方法采用两种高斯过程回归(GPR)模型,一种是强度模型,另一种是伸长率模型,它们的输出建立了强度和伸长率的获取函数修正目标空间。然后,利用贝叶斯抽样来平衡开采和勘探,设计下一步的实验。七次多目标主动学习迭代发现了两种新型超高强度、高延展性无铅钎料合金。随后,对两种新型钎料合金进行了各种材料表征,结果表明其在熔点性能、润湿性、电导率、焊点抗剪强度等方面均表现出优异的性能,并对合金的高强高延性机理进行了探讨。本文系统地分析了实验不确定性在机器学习中的重要作用,特别是在材料设计的全局优化中,这需要高度的预测泛化性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discovering novel lead-free solder alloy by multi-objective Bayesian active learning with experimental uncertainty

We present a multi-objective Bayesian active learning strategy, which greatly accelerates the discovery of super high-strength and high-ductility lead-free solder alloys. The active learning strategy demonstrates that a machine learning model will have high generalizability if experimental data uncertainty is included, which greatly improves the model prediction or the material design accuracy. The feature-point-start forward method in multi-objective optimization adopts two Gaussian process regression (GPR) models, one for strength and one for elongation, and their outputs build up the acquisition-function-modified objective space of strength and elongation. Then, Bayesian sampling is applied to design the next experiments by balancing exploitation and exploration. Seven multi-objective active learning iterations discovered two novel super high-strength and high-ductility lead-free solder alloys. After that, various material characterizations were conducted on the two novel solder alloys, and the results exhibited their high performances in melting properties, wettability, electrical conductivity, and shear strength of the solder joint and explored the mechanism of high strength and high ductility of the alloys. The present work systematically analyzes the important role of experimental uncertainty in machine learning, especially in the global optimization for material design, which demands high generalizability of predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
SPACIER: on-demand polymer design with fully automated all-atom classical molecular dynamics integrated into machine learning pipelines Exploring parameter dependence of atomic minima with implicit differentiation Active oversight and quality control in standard Bayesian optimization for autonomous experiments Feature engineering descriptors, transforms, and machine learning for grain boundaries and variable-sized atom clusters Machine learning Hubbard parameters with equivariant neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1