{"title":"氯化物残留增强了RuO2催化剂的酸性析氧反应的稳定性和效率","authors":"Huile Jin, Jiadong Chen, Menghui Qi, Yun Yang, Xiaofen Xiao, Ying Li, Yong Wang","doi":"10.1002/anie.202420860","DOIUrl":null,"url":null,"abstract":"Ruthenium dioxide (RuO2) is a benchmark electrocatalyst for proton exchange membrane water electrolyzers (PEMWE), but its stability during the oxygen evolution reaction (OER) is often compromised by lattice oxygen involvement and metal dissolution. Despite that the typical synthesis of RuO2 produces chloride residues, the underlying function of chloride have not well investigated. In this study, we synthesized chlorine‐containing RuO2 (RuO2‐Cl) and pure RuO2 catalysts with similar morphology and crystallinity. RuO2‐Cl demonstrated superior stability, three times greater than that of pure RuO2, and a lower overpotential of 176 mV at 10 mA cm‐2. Furthermore, the RuO2‐Cl catalysts that were in situ synthesized on a platinum‐coated titanium felt could maintain high performance for up to 1200 hours at 100 mA cm‐2. Computational and experimental analyses show that chloride stabilizes RuO2 by substituting the bridging oxygen atoms, which subsequently inhibits lattice oxygen evolution and Ru demetallation. Notably, this substitution also lowers the energy barrier of the rate‐determining step by strengthening the binding of *OOH intermediates. These findings offer new insights into the previously unknown role of chloride residues and how to improve RuO2 stability.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"62 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chloride Residues in RuO2 Catalysts Enhance Its Stability and Efficiency for Acidic Oxygen Evolution Reaction\",\"authors\":\"Huile Jin, Jiadong Chen, Menghui Qi, Yun Yang, Xiaofen Xiao, Ying Li, Yong Wang\",\"doi\":\"10.1002/anie.202420860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ruthenium dioxide (RuO2) is a benchmark electrocatalyst for proton exchange membrane water electrolyzers (PEMWE), but its stability during the oxygen evolution reaction (OER) is often compromised by lattice oxygen involvement and metal dissolution. Despite that the typical synthesis of RuO2 produces chloride residues, the underlying function of chloride have not well investigated. In this study, we synthesized chlorine‐containing RuO2 (RuO2‐Cl) and pure RuO2 catalysts with similar morphology and crystallinity. RuO2‐Cl demonstrated superior stability, three times greater than that of pure RuO2, and a lower overpotential of 176 mV at 10 mA cm‐2. Furthermore, the RuO2‐Cl catalysts that were in situ synthesized on a platinum‐coated titanium felt could maintain high performance for up to 1200 hours at 100 mA cm‐2. Computational and experimental analyses show that chloride stabilizes RuO2 by substituting the bridging oxygen atoms, which subsequently inhibits lattice oxygen evolution and Ru demetallation. Notably, this substitution also lowers the energy barrier of the rate‐determining step by strengthening the binding of *OOH intermediates. These findings offer new insights into the previously unknown role of chloride residues and how to improve RuO2 stability.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"62 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202420860\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420860","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
二氧化钌(RuO2)是质子交换膜水电解槽(PEMWE)的基准电催化剂,但其在析氧反应(OER)中的稳定性经常受到晶格氧参与和金属溶解的影响。尽管典型的RuO2合成会产生氯化物残基,但氯化物的潜在功能尚未得到很好的研究。在这项研究中,我们合成了含有氯的RuO2 (RuO2‐Cl)和纯RuO2催化剂,它们具有相似的形态和结晶度。RuO2‐Cl表现出优异的稳定性,是纯RuO2的三倍,并且在10 mA cm‐2下过电位较低,为176 mV。此外,在铂涂层钛毡上原位合成的RuO2‐Cl催化剂在100 mA cm‐2下可保持1200小时的高性能。计算和实验分析表明,氯化物通过取代桥接氧原子来稳定RuO2,从而抑制晶格析氧和Ru脱金属。值得注意的是,这种取代还通过加强*OOH中间体的结合降低了速率决定步骤的能垒。这些发现为氯化物残基的未知作用以及如何提高RuO2的稳定性提供了新的见解。
Chloride Residues in RuO2 Catalysts Enhance Its Stability and Efficiency for Acidic Oxygen Evolution Reaction
Ruthenium dioxide (RuO2) is a benchmark electrocatalyst for proton exchange membrane water electrolyzers (PEMWE), but its stability during the oxygen evolution reaction (OER) is often compromised by lattice oxygen involvement and metal dissolution. Despite that the typical synthesis of RuO2 produces chloride residues, the underlying function of chloride have not well investigated. In this study, we synthesized chlorine‐containing RuO2 (RuO2‐Cl) and pure RuO2 catalysts with similar morphology and crystallinity. RuO2‐Cl demonstrated superior stability, three times greater than that of pure RuO2, and a lower overpotential of 176 mV at 10 mA cm‐2. Furthermore, the RuO2‐Cl catalysts that were in situ synthesized on a platinum‐coated titanium felt could maintain high performance for up to 1200 hours at 100 mA cm‐2. Computational and experimental analyses show that chloride stabilizes RuO2 by substituting the bridging oxygen atoms, which subsequently inhibits lattice oxygen evolution and Ru demetallation. Notably, this substitution also lowers the energy barrier of the rate‐determining step by strengthening the binding of *OOH intermediates. These findings offer new insights into the previously unknown role of chloride residues and how to improve RuO2 stability.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.