调整金属阳极沉积的单原子材料

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-01-10 DOI:10.1016/j.nanoen.2025.110665
Si Zhao , David Patrun , Xudong Chen , Ziyaad Aytuna , Yiyin Huang , Sanjay Mathur , Zhensheng Hong
{"title":"调整金属阳极沉积的单原子材料","authors":"Si Zhao ,&nbsp;David Patrun ,&nbsp;Xudong Chen ,&nbsp;Ziyaad Aytuna ,&nbsp;Yiyin Huang ,&nbsp;Sanjay Mathur ,&nbsp;Zhensheng Hong","doi":"10.1016/j.nanoen.2025.110665","DOIUrl":null,"url":null,"abstract":"<div><div>High-energy-density battery systems based on metal anodes have garnered tremendous research interests, holding promising applications in power grid systems, portable electronics, and electric mobility. However, the road to applications of various metal anodes is inhibited by the uneven electrodeposition and dendrites growth. The emerging single atom materials (SAMs) with tunable electronic structure provide a way to precisely adjust the electrochemical nucleation process at the atomic level, allowing the possibility of perfect homogeneous deposition of metal anode. This review article initially summarizes the various synthesis strategies and structural characterization of SAMs. Furthermore, it focuses on a comprehensive review of tailoring SAMs with unique advantages for regulating the metal (Li, Na, Zn, et al.) anode electrodeposition, offering fundamental view of designing SAMs for high-energy metal anode-based batteries. Finally, the article outlines the challenges and future research prospects of SAMs in advanced battery system applications.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"135 ","pages":"Article 110665"},"PeriodicalIF":16.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tailoring single atom materials for regulating metal anode deposition\",\"authors\":\"Si Zhao ,&nbsp;David Patrun ,&nbsp;Xudong Chen ,&nbsp;Ziyaad Aytuna ,&nbsp;Yiyin Huang ,&nbsp;Sanjay Mathur ,&nbsp;Zhensheng Hong\",\"doi\":\"10.1016/j.nanoen.2025.110665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-energy-density battery systems based on metal anodes have garnered tremendous research interests, holding promising applications in power grid systems, portable electronics, and electric mobility. However, the road to applications of various metal anodes is inhibited by the uneven electrodeposition and dendrites growth. The emerging single atom materials (SAMs) with tunable electronic structure provide a way to precisely adjust the electrochemical nucleation process at the atomic level, allowing the possibility of perfect homogeneous deposition of metal anode. This review article initially summarizes the various synthesis strategies and structural characterization of SAMs. Furthermore, it focuses on a comprehensive review of tailoring SAMs with unique advantages for regulating the metal (Li, Na, Zn, et al.) anode electrodeposition, offering fundamental view of designing SAMs for high-energy metal anode-based batteries. Finally, the article outlines the challenges and future research prospects of SAMs in advanced battery system applications.</div></div>\",\"PeriodicalId\":394,\"journal\":{\"name\":\"Nano Energy\",\"volume\":\"135 \",\"pages\":\"Article 110665\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211285525000242\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525000242","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于金属阳极的高能量密度电池系统已经获得了巨大的研究兴趣,在电网系统、便携式电子设备和电动汽车中有着广阔的应用前景。然而,不均匀的电沉积和枝晶生长阻碍了各种金属阳极的应用。新兴的具有可调谐电子结构的单原子材料(SAMs)提供了一种在原子水平上精确调节电化学成核过程的方法,使金属阳极的完美均匀沉积成为可能。本文首先综述了各种合成策略及其结构表征。此外,本文还全面回顾了在调节金属(Li, Na, Zn等)阳极电沉积方面具有独特优势的定制SAMs,为设计用于高能金属阳极基电池的SAMs提供了基本观点。最后,文章概述了地对空导弹在先进电池系统中的应用所面临的挑战和未来的研究前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tailoring single atom materials for regulating metal anode deposition
High-energy-density battery systems based on metal anodes have garnered tremendous research interests, holding promising applications in power grid systems, portable electronics, and electric mobility. However, the road to applications of various metal anodes is inhibited by the uneven electrodeposition and dendrites growth. The emerging single atom materials (SAMs) with tunable electronic structure provide a way to precisely adjust the electrochemical nucleation process at the atomic level, allowing the possibility of perfect homogeneous deposition of metal anode. This review article initially summarizes the various synthesis strategies and structural characterization of SAMs. Furthermore, it focuses on a comprehensive review of tailoring SAMs with unique advantages for regulating the metal (Li, Na, Zn, et al.) anode electrodeposition, offering fundamental view of designing SAMs for high-energy metal anode-based batteries. Finally, the article outlines the challenges and future research prospects of SAMs in advanced battery system applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Bioinspired extreme environment adaptive hydrogel enabled by weakening hydrogen bonding Regulating Cation Ordering in Lithium-Rich Layered Cathodes for Enhanced Anionic Redox Reactions Mutualistic Symbiotic Wireless Node for Next-Era Smart Transportation Constructing a high-power self-powered electrochemical pressure sensor for multimode pressure detections Wearable Flexible Solid-State Supercapacitors: Interface Engineering Using Functionalized Hexagonal Boron Nitride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1