{"title":"增材制造高熵合金中取向相关的晶格旋转和相变","authors":"D. Bajaj, A.H. Feng, S.J. Qu, D.Y. Li, D.L. Chen","doi":"10.1016/j.jmst.2024.10.054","DOIUrl":null,"url":null,"abstract":"The rapidly increasing scientific interest in 3D-printed high-entropy alloys (HEAs) necessitates the understanding of their deformation mechanisms. Here, we present the grain rotation behavior of a nearly equiatomic CrMnFeCoNi HEA fabricated with laser-beam powder bed fusion via quasi <em>in-situ</em> electron backscatter diffraction (EBSD) observations during compressive deformation. The rotation paths of grains can be predicted via a new lattice reorientation factor (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1509.2 749.2\" width=\"3.505ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(878,-163)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></script></span>), defined as the average of primary and secondary slip Schmid factors. The grains that initially have their <111> directions oriented close to the loading direction with low-to-intermediate <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1509.2 749.2\" width=\"3.505ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(878,-163)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></script></span> values tend to rotate towards the <101> pole. The grains oriented in the center of inverse pole figures with high <span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1509.2 749.2\" width=\"3.505ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(878,-163)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></script></span> values develop multiple rotation paths pointing away from the <001> pole. The cube-oriented grains with their <001> directions close to the loading direction undergo face-centered cubic (FCC)-to-hexagonal close-packed (HCP) phase transformation due to the activation of octahedral slip involving multiple slip systems. This transformation can be well elucidated via a modified parameter, defined as the average of four maximum Schmid factors on each of four {111} slip/twinning planes in FCC crystals. The findings provide new insights into the underlying mechanisms for deformation-induced grain rotation and phase transformation and help pave the way for developing advanced HEAs via transformation-induced plasticity.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"2 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientation-dependent lattice rotation and phase transformation in an additively manufactured high-entropy alloy\",\"authors\":\"D. Bajaj, A.H. Feng, S.J. Qu, D.Y. Li, D.L. Chen\",\"doi\":\"10.1016/j.jmst.2024.10.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapidly increasing scientific interest in 3D-printed high-entropy alloys (HEAs) necessitates the understanding of their deformation mechanisms. Here, we present the grain rotation behavior of a nearly equiatomic CrMnFeCoNi HEA fabricated with laser-beam powder bed fusion via quasi <em>in-situ</em> electron backscatter diffraction (EBSD) observations during compressive deformation. The rotation paths of grains can be predicted via a new lattice reorientation factor (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.74ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -498.8 1509.2 749.2\\\" width=\\\"3.505ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(878,-163)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-41\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></script></span>), defined as the average of primary and secondary slip Schmid factors. The grains that initially have their <111> directions oriented close to the loading direction with low-to-intermediate <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.74ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -498.8 1509.2 749.2\\\" width=\\\"3.505ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(878,-163)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-41\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></script></span> values tend to rotate towards the <101> pole. The grains oriented in the center of inverse pole figures with high <span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.74ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -498.8 1509.2 749.2\\\" width=\\\"3.505ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(878,-163)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-41\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></script></span> values develop multiple rotation paths pointing away from the <001> pole. The cube-oriented grains with their <001> directions close to the loading direction undergo face-centered cubic (FCC)-to-hexagonal close-packed (HCP) phase transformation due to the activation of octahedral slip involving multiple slip systems. This transformation can be well elucidated via a modified parameter, defined as the average of four maximum Schmid factors on each of four {111} slip/twinning planes in FCC crystals. The findings provide new insights into the underlying mechanisms for deformation-induced grain rotation and phase transformation and help pave the way for developing advanced HEAs via transformation-induced plasticity.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.10.054\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.054","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Orientation-dependent lattice rotation and phase transformation in an additively manufactured high-entropy alloy
The rapidly increasing scientific interest in 3D-printed high-entropy alloys (HEAs) necessitates the understanding of their deformation mechanisms. Here, we present the grain rotation behavior of a nearly equiatomic CrMnFeCoNi HEA fabricated with laser-beam powder bed fusion via quasi in-situ electron backscatter diffraction (EBSD) observations during compressive deformation. The rotation paths of grains can be predicted via a new lattice reorientation factor (), defined as the average of primary and secondary slip Schmid factors. The grains that initially have their <111> directions oriented close to the loading direction with low-to-intermediate values tend to rotate towards the <101> pole. The grains oriented in the center of inverse pole figures with high values develop multiple rotation paths pointing away from the <001> pole. The cube-oriented grains with their <001> directions close to the loading direction undergo face-centered cubic (FCC)-to-hexagonal close-packed (HCP) phase transformation due to the activation of octahedral slip involving multiple slip systems. This transformation can be well elucidated via a modified parameter, defined as the average of four maximum Schmid factors on each of four {111} slip/twinning planes in FCC crystals. The findings provide new insights into the underlying mechanisms for deformation-induced grain rotation and phase transformation and help pave the way for developing advanced HEAs via transformation-induced plasticity.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.