增材制造高熵合金中取向相关的晶格旋转和相变

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2025-01-11 DOI:10.1016/j.jmst.2024.10.054
D. Bajaj, A.H. Feng, S.J. Qu, D.Y. Li, D.L. Chen
{"title":"增材制造高熵合金中取向相关的晶格旋转和相变","authors":"D. Bajaj, A.H. Feng, S.J. Qu, D.Y. Li, D.L. Chen","doi":"10.1016/j.jmst.2024.10.054","DOIUrl":null,"url":null,"abstract":"The rapidly increasing scientific interest in 3D-printed high-entropy alloys (HEAs) necessitates the understanding of their deformation mechanisms. Here, we present the grain rotation behavior of a nearly equiatomic CrMnFeCoNi HEA fabricated with laser-beam powder bed fusion via quasi <em>in-situ</em> electron backscatter diffraction (EBSD) observations during compressive deformation. The rotation paths of grains can be predicted via a new lattice reorientation factor (<span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1509.2 749.2\" width=\"3.505ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(878,-163)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></script></span>), defined as the average of primary and secondary slip Schmid factors. The grains that initially have their &lt;111&gt; directions oriented close to the loading direction with low-to-intermediate <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1509.2 749.2\" width=\"3.505ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(878,-163)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></script></span> values tend to rotate towards the &lt;101&gt; pole. The grains oriented in the center of inverse pole figures with high <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mi is=\"true\"&gt;m&lt;/mi&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.582ex;\" viewbox=\"0 -498.8 1509.2 749.2\" width=\"3.505ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-6D\"></use></g><g is=\"true\" transform=\"translate(878,-163)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-41\"></use></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mi is=\"true\">m</mi><mi is=\"true\">A</mi></msub></math></script></span> values develop multiple rotation paths pointing away from the &lt;001&gt; pole. The cube-oriented grains with their &lt;001&gt; directions close to the loading direction undergo face-centered cubic (FCC)-to-hexagonal close-packed (HCP) phase transformation due to the activation of octahedral slip involving multiple slip systems. This transformation can be well elucidated via a modified parameter, defined as the average of four maximum Schmid factors on each of four {111} slip/twinning planes in FCC crystals. The findings provide new insights into the underlying mechanisms for deformation-induced grain rotation and phase transformation and help pave the way for developing advanced HEAs via transformation-induced plasticity.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"2 1","pages":""},"PeriodicalIF":11.2000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orientation-dependent lattice rotation and phase transformation in an additively manufactured high-entropy alloy\",\"authors\":\"D. Bajaj, A.H. Feng, S.J. Qu, D.Y. Li, D.L. Chen\",\"doi\":\"10.1016/j.jmst.2024.10.054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapidly increasing scientific interest in 3D-printed high-entropy alloys (HEAs) necessitates the understanding of their deformation mechanisms. Here, we present the grain rotation behavior of a nearly equiatomic CrMnFeCoNi HEA fabricated with laser-beam powder bed fusion via quasi <em>in-situ</em> electron backscatter diffraction (EBSD) observations during compressive deformation. The rotation paths of grains can be predicted via a new lattice reorientation factor (<span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.74ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -498.8 1509.2 749.2\\\" width=\\\"3.505ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(878,-163)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-41\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></script></span>), defined as the average of primary and secondary slip Schmid factors. The grains that initially have their &lt;111&gt; directions oriented close to the loading direction with low-to-intermediate <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.74ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -498.8 1509.2 749.2\\\" width=\\\"3.505ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(878,-163)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-41\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></script></span> values tend to rotate towards the &lt;101&gt; pole. The grains oriented in the center of inverse pole figures with high <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;m&lt;/mi&gt;&lt;mi is=\\\"true\\\"&gt;A&lt;/mi&gt;&lt;/msub&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"1.74ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.582ex;\\\" viewbox=\\\"0 -498.8 1509.2 749.2\\\" width=\\\"3.505ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-6D\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(878,-163)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMATHI-41\\\"></use></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></span></span><script type=\\\"math/mml\\\"><math><msub is=\\\"true\\\"><mi is=\\\"true\\\">m</mi><mi is=\\\"true\\\">A</mi></msub></math></script></span> values develop multiple rotation paths pointing away from the &lt;001&gt; pole. The cube-oriented grains with their &lt;001&gt; directions close to the loading direction undergo face-centered cubic (FCC)-to-hexagonal close-packed (HCP) phase transformation due to the activation of octahedral slip involving multiple slip systems. This transformation can be well elucidated via a modified parameter, defined as the average of four maximum Schmid factors on each of four {111} slip/twinning planes in FCC crystals. The findings provide new insights into the underlying mechanisms for deformation-induced grain rotation and phase transformation and help pave the way for developing advanced HEAs via transformation-induced plasticity.\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.10.054\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.10.054","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

3d打印高熵合金(HEAs)的科学兴趣迅速增加,需要了解其变形机制。本文通过准原位电子背散射衍射(EBSD)观察了激光粉末床熔合制备的近等原子CrMnFeCoNi HEA在压缩变形过程中的晶粒旋转行为。晶粒的旋转路径可以通过一种新的晶格重取向因子(mAmA)来预测,该因子被定义为主要滑移施密德因子和次要滑移施密德因子的平均值。最初有<;111>;低至中等mAmA值的靠近加载方向的方向趋向于向<;101>;杆。在具有高mAmA值的逆极图中心取向的晶粒发展出多条远离<;001>;杆。立方体取向晶粒及其<;001>;由于涉及多滑移体系的八面体滑移的激活,靠近加载方向的方向发生面心立方(FCC)到六方密堆积(HCP)相变。这种转变可以通过一个修正的参数来很好地解释,该参数定义为FCC晶体中四个{111}滑移/孪晶面上的四个最大施密德因子的平均值。这些发现为变形诱导的晶粒旋转和相变的潜在机制提供了新的见解,并为通过变形诱导的塑性开发先进的HEAs铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Orientation-dependent lattice rotation and phase transformation in an additively manufactured high-entropy alloy
The rapidly increasing scientific interest in 3D-printed high-entropy alloys (HEAs) necessitates the understanding of their deformation mechanisms. Here, we present the grain rotation behavior of a nearly equiatomic CrMnFeCoNi HEA fabricated with laser-beam powder bed fusion via quasi in-situ electron backscatter diffraction (EBSD) observations during compressive deformation. The rotation paths of grains can be predicted via a new lattice reorientation factor (mA), defined as the average of primary and secondary slip Schmid factors. The grains that initially have their <111> directions oriented close to the loading direction with low-to-intermediate mA values tend to rotate towards the <101> pole. The grains oriented in the center of inverse pole figures with high mA values develop multiple rotation paths pointing away from the <001> pole. The cube-oriented grains with their <001> directions close to the loading direction undergo face-centered cubic (FCC)-to-hexagonal close-packed (HCP) phase transformation due to the activation of octahedral slip involving multiple slip systems. This transformation can be well elucidated via a modified parameter, defined as the average of four maximum Schmid factors on each of four {111} slip/twinning planes in FCC crystals. The findings provide new insights into the underlying mechanisms for deformation-induced grain rotation and phase transformation and help pave the way for developing advanced HEAs via transformation-induced plasticity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
New insights into the creep degradation mechanisms in thermal barrier coating/single-crystal superalloy system with temperature and stress dependency Grain refinement and its effect of polycrystalline metals during high strain rate deformation: Crystal plasticity modeling A Novel NIR-responsive coating for magnesium implants: controllable degradation enhanced by air bomb Multi-objective optimization of laser powder bed fused titanium considering strength and ductility: A new framework based on explainable stacking ensemble learning and NSGA-II Achieving ballistic impact resistance in a lightweight Mg-Gd-Y-Zn alloy against a 7.62 mm steel core projectile for anti-armor applications; a microstructural approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1