Qianmin Huang, Yali Yan, Xue Zhang, Xuejiao Cao, Richard Ludlow, Min Lu, Huaming An
{"title":"循环Dof因子3通过激活刺梨果实gdp - l -半乳糖磷酸化酶介导光依赖性抗坏血酸生物合成","authors":"Qianmin Huang, Yali Yan, Xue Zhang, Xuejiao Cao, Richard Ludlow, Min Lu, Huaming An","doi":"10.1093/plphys/kiaf014","DOIUrl":null,"url":null,"abstract":"Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors. Among these factors, Cycling Dof Factor 3 (RrCDF3) was highly responsive to variations in light intensity, quality, and photoperiod, leading to alterations in RrGGP2 expression. Further yeast one-hybrid and dual-luciferase assays confirmed that RrCDF3 acts as a transcriptional activator of RrGGP2 by binding specifically to its promoter. Modulating the expression of RrCDF3 in fruits through transient overexpression and silencing resulted in significant changes in RrGGP2 expression and AsA synthesis. Additionally, stable overexpression of RrCDF3 in R. roxburghii calli and Solanum lycopersicum plants resulted in a significant increase in AsA content. Notably, the well-known photo-signal transcription factor ELONGATED HYPOCOTYL5 (RrHY5) directly interacted with the RrCDF3 promoter, enhancing its transcription. These findings reveal a special mechanism involving the RrHY5-RrCDF3-RrGGP2 module that mediates light-induced AsA biosynthesis in R. roxburghii fruit.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"2 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycling Dof Factor 3 mediates light-dependent ascorbate biosynthesis by activating GDP-L-galactose phosphorylase in Rosa roxburghii fruit\",\"authors\":\"Qianmin Huang, Yali Yan, Xue Zhang, Xuejiao Cao, Richard Ludlow, Min Lu, Huaming An\",\"doi\":\"10.1093/plphys/kiaf014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors. Among these factors, Cycling Dof Factor 3 (RrCDF3) was highly responsive to variations in light intensity, quality, and photoperiod, leading to alterations in RrGGP2 expression. Further yeast one-hybrid and dual-luciferase assays confirmed that RrCDF3 acts as a transcriptional activator of RrGGP2 by binding specifically to its promoter. Modulating the expression of RrCDF3 in fruits through transient overexpression and silencing resulted in significant changes in RrGGP2 expression and AsA synthesis. Additionally, stable overexpression of RrCDF3 in R. roxburghii calli and Solanum lycopersicum plants resulted in a significant increase in AsA content. Notably, the well-known photo-signal transcription factor ELONGATED HYPOCOTYL5 (RrHY5) directly interacted with the RrCDF3 promoter, enhancing its transcription. These findings reveal a special mechanism involving the RrHY5-RrCDF3-RrGGP2 module that mediates light-induced AsA biosynthesis in R. roxburghii fruit.\",\"PeriodicalId\":20101,\"journal\":{\"name\":\"Plant Physiology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/plphys/kiaf014\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf014","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
光在植物l -抗坏血酸(AsA)库大小的决定中起着重要作用,主要通过AsA代谢相关基因的转录调控。然而,光依赖性AsA生物合成的转录诱导的具体机制尚不清楚。在这项研究中,我们使用了一个包含来自roxburghii果实中参与AsA过量产生的关键基因gdp - l -半乳糖磷酸化酶2 (RrGGP2)光响应基序的启动子序列来确定参与转录因子。在这些因子中,循环Dof因子3 (RrCDF3)对光强、质量和光周期的变化有高度响应,导致RrGGP2的表达改变。进一步的酵母单杂交和双荧光素酶实验证实,RrCDF3通过特异性结合RrGGP2的启动子,作为RrGGP2的转录激活因子。通过瞬时过表达和沉默调节果实中RrCDF3的表达,导致RrGGP2的表达和AsA合成发生显著变化。此外,RrCDF3在刺梨愈伤组织和番茄茄中稳定过表达,导致AsA含量显著增加。值得注意的是,众所周知的光信号转录因子伸长下cotyl5 (RrHY5)直接与RrCDF3启动子相互作用,增强其转录。这些发现揭示了RrHY5-RrCDF3-RrGGP2模块介导光诱导红梨AsA生物合成的特殊机制。
Cycling Dof Factor 3 mediates light-dependent ascorbate biosynthesis by activating GDP-L-galactose phosphorylase in Rosa roxburghii fruit
Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors. Among these factors, Cycling Dof Factor 3 (RrCDF3) was highly responsive to variations in light intensity, quality, and photoperiod, leading to alterations in RrGGP2 expression. Further yeast one-hybrid and dual-luciferase assays confirmed that RrCDF3 acts as a transcriptional activator of RrGGP2 by binding specifically to its promoter. Modulating the expression of RrCDF3 in fruits through transient overexpression and silencing resulted in significant changes in RrGGP2 expression and AsA synthesis. Additionally, stable overexpression of RrCDF3 in R. roxburghii calli and Solanum lycopersicum plants resulted in a significant increase in AsA content. Notably, the well-known photo-signal transcription factor ELONGATED HYPOCOTYL5 (RrHY5) directly interacted with the RrCDF3 promoter, enhancing its transcription. These findings reveal a special mechanism involving the RrHY5-RrCDF3-RrGGP2 module that mediates light-induced AsA biosynthesis in R. roxburghii fruit.
期刊介绍:
Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research.
As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.