I. Schweigert, D. Zakrevsky, E. Milakhina, P. Gugin, M. Biryukov, A. Polyakova, N. Kryachkova, E. Gorbunova, A. Epanchintseva, I. Pyshnaya, O. Koval
{"title":"低温大气等离子体射流和金纳米颗粒同时处理细胞时抗癌效果的增强","authors":"I. Schweigert, D. Zakrevsky, E. Milakhina, P. Gugin, M. Biryukov, A. Polyakova, N. Kryachkova, E. Gorbunova, A. Epanchintseva, I. Pyshnaya, O. Koval","doi":"10.1134/S1063780X24601597","DOIUrl":null,"url":null,"abstract":"<p>Selecting the most effective and biologically safe operation regimes of a cold atmospheric plasma jet (CAPJ) is a defining factor in developing the cancer treatments based on the CAPJ. Experimentally and numerically, by changing the pulse duration of the positive pulsed voltage, we determined the optimum CAPJ regimes with regular propagation of streamers and a maximum discharge current at a temperature <i>T</i> < 42°C. In these regimes, the CAPJ appreciably suppresses the viability of the cancerous cells. It was shown that adding gold nanoparticles increases the cytotoxic effect of the plasma jet and decreases the viability of the NCI‑H23 epithelioid lung adenocarcinoma, the A549 lung adenocarcinoma, the BrCCh4e-134 mammary adenocarcinoma, and the cells of the uMel1 uveal melanoma. The polyethylenglycol-modified gold nanoparticles with fluorescent labels were used to visualize the absorption of the nanoparticles by the cells. It was shown that the CAPJ stimulated the penetration of the nanoparticles into the cells when they were applied to the medium immediately before the CAPJ treatment or immediately after, which indicates a short-time increase in the permeability of the cell membrane.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 11","pages":"1375 - 1387"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of the Anticancer Effect during the Simultaneous Treatment of Cells by a Cold Atmospheric Plasma Jet and Gold Nanoparticles\",\"authors\":\"I. Schweigert, D. Zakrevsky, E. Milakhina, P. Gugin, M. Biryukov, A. Polyakova, N. Kryachkova, E. Gorbunova, A. Epanchintseva, I. Pyshnaya, O. Koval\",\"doi\":\"10.1134/S1063780X24601597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Selecting the most effective and biologically safe operation regimes of a cold atmospheric plasma jet (CAPJ) is a defining factor in developing the cancer treatments based on the CAPJ. Experimentally and numerically, by changing the pulse duration of the positive pulsed voltage, we determined the optimum CAPJ regimes with regular propagation of streamers and a maximum discharge current at a temperature <i>T</i> < 42°C. In these regimes, the CAPJ appreciably suppresses the viability of the cancerous cells. It was shown that adding gold nanoparticles increases the cytotoxic effect of the plasma jet and decreases the viability of the NCI‑H23 epithelioid lung adenocarcinoma, the A549 lung adenocarcinoma, the BrCCh4e-134 mammary adenocarcinoma, and the cells of the uMel1 uveal melanoma. The polyethylenglycol-modified gold nanoparticles with fluorescent labels were used to visualize the absorption of the nanoparticles by the cells. It was shown that the CAPJ stimulated the penetration of the nanoparticles into the cells when they were applied to the medium immediately before the CAPJ treatment or immediately after, which indicates a short-time increase in the permeability of the cell membrane.</p>\",\"PeriodicalId\":735,\"journal\":{\"name\":\"Plasma Physics Reports\",\"volume\":\"50 11\",\"pages\":\"1375 - 1387\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics Reports\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1063780X24601597\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X24601597","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Enhancement of the Anticancer Effect during the Simultaneous Treatment of Cells by a Cold Atmospheric Plasma Jet and Gold Nanoparticles
Selecting the most effective and biologically safe operation regimes of a cold atmospheric plasma jet (CAPJ) is a defining factor in developing the cancer treatments based on the CAPJ. Experimentally and numerically, by changing the pulse duration of the positive pulsed voltage, we determined the optimum CAPJ regimes with regular propagation of streamers and a maximum discharge current at a temperature T < 42°C. In these regimes, the CAPJ appreciably suppresses the viability of the cancerous cells. It was shown that adding gold nanoparticles increases the cytotoxic effect of the plasma jet and decreases the viability of the NCI‑H23 epithelioid lung adenocarcinoma, the A549 lung adenocarcinoma, the BrCCh4e-134 mammary adenocarcinoma, and the cells of the uMel1 uveal melanoma. The polyethylenglycol-modified gold nanoparticles with fluorescent labels were used to visualize the absorption of the nanoparticles by the cells. It was shown that the CAPJ stimulated the penetration of the nanoparticles into the cells when they were applied to the medium immediately before the CAPJ treatment or immediately after, which indicates a short-time increase in the permeability of the cell membrane.
期刊介绍:
Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.