BiomiX是一个用户友好的生物信息学工具,用于民主化分析和整合多组学数据。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2025-01-10 DOI:10.1186/s12859-024-06022-y
Cristian Iperi, Álvaro Fernández-Ochoa, Guillermo Barturen, Jacques-Olivier Pers, Nathan Foulquier, Eleonore Bettacchioli, Marta Alarcón-Riquelme, Divi Cornec, Anne Bordron, Christophe Jamin
{"title":"BiomiX是一个用户友好的生物信息学工具,用于民主化分析和整合多组学数据。","authors":"Cristian Iperi, Álvaro Fernández-Ochoa, Guillermo Barturen, Jacques-Olivier Pers, Nathan Foulquier, Eleonore Bettacchioli, Marta Alarcón-Riquelme, Divi Cornec, Anne Bordron, Christophe Jamin","doi":"10.1186/s12859-024-06022-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interpreting biological system changes requires interpreting vast amounts of multi-omics data. While user-friendly tools exist for single-omics analysis, integrating multiple omics still requires bioinformatics expertise, limiting accessibility for the broader scientific community.</p><p><strong>Results: </strong>BiomiX tackles the bottleneck in high-throughput omics data analysis, enabling efficient and integrated analysis of multiomics data obtained from two cohorts. BiomiX incorporates diverse omics data, using DESeq2/Limma packages for transcriptomics, and quantifying metabolomics peak differences, evaluated via the Wilcoxon test with the False Discovery Rate correction. The metabolomics annotation for Liquid Chromatography-Mass Spectrometry untargeted metabolomics is additionally supported using the mass-to-charge ratio in the CEU Mass Mediator database and fragmentation spectra in the TidyMass package. Methylomics analysis is performed using the ChAMP R package. Finally, Multi-Omics Factor Analysis (MOFA) integration identifies shared sources of variation across omics data. BiomiX also generates statistics, report figures and integrates EnrichR and GSEA for biological process exploration and subgroup analysis based on user-defined gene panels enhancing condition subtyping. BiomiX fine-tunes MOFA models, to optimize factors number selection, distinguishing between cohorts and providing tools to interpret discriminative MOFA factors. The interpretation relies on innovative bibliography research on Pubmed, which provides the articles most related to the discriminant factor contributors. Furthermore, discriminant MOFA factors are correlated with clinical data, and the top contributing pathways are explored, all with the aim of guiding the user in factor interpretation.</p><p><strong>Conclusions: </strong>The analysis of single-omics and multi-omics integration in a standalone tool, along with MOFA implementation and its interpretability via literature, represents significant progress in the multi-omics field in line with the \"Findable, Accessible, Interoperable, and Reusable\" data principles. BiomiX offers a wide range of parameters and interactive data visualization, allowing for personalized analysis tailored to user needs. This R-based, user-friendly tool is compatible with multiple operating systems and aims to make multi-omics analysis accessible to non-experts in bioinformatics.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"26 1","pages":"8"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721463/pdf/","citationCount":"0","resultStr":"{\"title\":\"BiomiX, a user-friendly bioinformatic tool for democratized analysis and integration of multiomics data.\",\"authors\":\"Cristian Iperi, Álvaro Fernández-Ochoa, Guillermo Barturen, Jacques-Olivier Pers, Nathan Foulquier, Eleonore Bettacchioli, Marta Alarcón-Riquelme, Divi Cornec, Anne Bordron, Christophe Jamin\",\"doi\":\"10.1186/s12859-024-06022-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Interpreting biological system changes requires interpreting vast amounts of multi-omics data. While user-friendly tools exist for single-omics analysis, integrating multiple omics still requires bioinformatics expertise, limiting accessibility for the broader scientific community.</p><p><strong>Results: </strong>BiomiX tackles the bottleneck in high-throughput omics data analysis, enabling efficient and integrated analysis of multiomics data obtained from two cohorts. BiomiX incorporates diverse omics data, using DESeq2/Limma packages for transcriptomics, and quantifying metabolomics peak differences, evaluated via the Wilcoxon test with the False Discovery Rate correction. The metabolomics annotation for Liquid Chromatography-Mass Spectrometry untargeted metabolomics is additionally supported using the mass-to-charge ratio in the CEU Mass Mediator database and fragmentation spectra in the TidyMass package. Methylomics analysis is performed using the ChAMP R package. Finally, Multi-Omics Factor Analysis (MOFA) integration identifies shared sources of variation across omics data. BiomiX also generates statistics, report figures and integrates EnrichR and GSEA for biological process exploration and subgroup analysis based on user-defined gene panels enhancing condition subtyping. BiomiX fine-tunes MOFA models, to optimize factors number selection, distinguishing between cohorts and providing tools to interpret discriminative MOFA factors. The interpretation relies on innovative bibliography research on Pubmed, which provides the articles most related to the discriminant factor contributors. Furthermore, discriminant MOFA factors are correlated with clinical data, and the top contributing pathways are explored, all with the aim of guiding the user in factor interpretation.</p><p><strong>Conclusions: </strong>The analysis of single-omics and multi-omics integration in a standalone tool, along with MOFA implementation and its interpretability via literature, represents significant progress in the multi-omics field in line with the \\\"Findable, Accessible, Interoperable, and Reusable\\\" data principles. BiomiX offers a wide range of parameters and interactive data visualization, allowing for personalized analysis tailored to user needs. This R-based, user-friendly tool is compatible with multiple operating systems and aims to make multi-omics analysis accessible to non-experts in bioinformatics.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":\"26 1\",\"pages\":\"8\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-06022-y\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-06022-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

背景:解释生物系统的变化需要解释大量的多组学数据。虽然存在用于单组学分析的用户友好工具,但整合多组学仍然需要生物信息学专业知识,限制了更广泛的科学界的可及性。结果:BiomiX解决了高通量组学数据分析的瓶颈,能够对来自两个队列的多组学数据进行高效和集成的分析。BiomiX整合了多种组学数据,使用DESeq2/Limma包进行转录组学,并量化代谢组学峰值差异,通过带有错误发现率校正的Wilcoxon测试进行评估。对于液相色谱-质谱非靶向代谢组学的代谢组注释,还使用CEU质量介质数据库中的质量电荷比和TidyMass包中的碎片谱来支持。甲基组学分析使用ChAMP R包进行。最后,多组学因子分析(MOFA)集成识别组学数据中共享的变异源。BiomiX还生成统计数据、报告数据,并将enrichment r和GSEA集成在一起,用于生物过程探索和基于用户自定义基因面板的亚群分析,从而增强病情亚型。BiomiX对MOFA模型进行微调,以优化因子数量的选择,区分队列,并提供解释歧视性MOFA因素的工具。这种解释依赖于Pubmed的创新书目研究,它提供了与判别因子贡献者最相关的文章。此外,鉴别MOFA因素与临床数据的相关性,并探讨了最重要的贡献途径,所有这些都是为了指导用户进行因素解释。结论:在一个独立的工具中分析单组学和多组学的集成,以及MOFA的实现及其通过文献的可解释性,代表了多组学领域的重大进展,符合“可查找、可访问、可互操作和可重用”的数据原则。BiomiX提供广泛的参数和交互式数据可视化,允许根据用户需求进行个性化分析。这个基于r的,用户友好的工具与多种操作系统兼容,旨在使非生物信息学专家也可以进行多组学分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BiomiX, a user-friendly bioinformatic tool for democratized analysis and integration of multiomics data.

Background: Interpreting biological system changes requires interpreting vast amounts of multi-omics data. While user-friendly tools exist for single-omics analysis, integrating multiple omics still requires bioinformatics expertise, limiting accessibility for the broader scientific community.

Results: BiomiX tackles the bottleneck in high-throughput omics data analysis, enabling efficient and integrated analysis of multiomics data obtained from two cohorts. BiomiX incorporates diverse omics data, using DESeq2/Limma packages for transcriptomics, and quantifying metabolomics peak differences, evaluated via the Wilcoxon test with the False Discovery Rate correction. The metabolomics annotation for Liquid Chromatography-Mass Spectrometry untargeted metabolomics is additionally supported using the mass-to-charge ratio in the CEU Mass Mediator database and fragmentation spectra in the TidyMass package. Methylomics analysis is performed using the ChAMP R package. Finally, Multi-Omics Factor Analysis (MOFA) integration identifies shared sources of variation across omics data. BiomiX also generates statistics, report figures and integrates EnrichR and GSEA for biological process exploration and subgroup analysis based on user-defined gene panels enhancing condition subtyping. BiomiX fine-tunes MOFA models, to optimize factors number selection, distinguishing between cohorts and providing tools to interpret discriminative MOFA factors. The interpretation relies on innovative bibliography research on Pubmed, which provides the articles most related to the discriminant factor contributors. Furthermore, discriminant MOFA factors are correlated with clinical data, and the top contributing pathways are explored, all with the aim of guiding the user in factor interpretation.

Conclusions: The analysis of single-omics and multi-omics integration in a standalone tool, along with MOFA implementation and its interpretability via literature, represents significant progress in the multi-omics field in line with the "Findable, Accessible, Interoperable, and Reusable" data principles. BiomiX offers a wide range of parameters and interactive data visualization, allowing for personalized analysis tailored to user needs. This R-based, user-friendly tool is compatible with multiple operating systems and aims to make multi-omics analysis accessible to non-experts in bioinformatics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Estimation of mosaic loss of Y chromosome cell fraction with genotyping arrays lacking coverage in the pseudoautosomal region. A Dirichlet-multinomial mixed model for determining differential abundance of mutational signatures. BHCox: Bayesian heredity-constrained Cox proportional hazards models for detecting gene-environment interactions. MFCADTI: improving drug-target interaction prediction by integrating multiple feature through cross attention mechanism. Harnessing pre-trained models for accurate prediction of protein-ligand binding affinity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1