食用昆虫正十六酸和油酸对α-葡萄糖苷酶、α-淀粉酶、酪氨酸酶和乙酰胆碱酯酶的抑制潜力:体外和硅实验研究。

IF 3.3 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Journal of the Science of Food and Agriculture Pub Date : 2025-01-11 DOI:10.1002/jsfa.14121
Kanokorn Wechakorn, Apirak Payaka, Jintana Masoongnoen, Sukrit Wattanalaorsomboon, Sompong Sansenya
{"title":"食用昆虫正十六酸和油酸对α-葡萄糖苷酶、α-淀粉酶、酪氨酸酶和乙酰胆碱酯酶的抑制潜力:体外和硅实验研究。","authors":"Kanokorn Wechakorn, Apirak Payaka, Jintana Masoongnoen, Sukrit Wattanalaorsomboon, Sompong Sansenya","doi":"10.1002/jsfa.14121","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.</p><p><strong>Results: </strong>The total phenolic content of the edible insect extracts correlated with enzyme inhibitory activity. The quercetin and kaempferol content of B. mori ethyl acetate (EtOAc) extract was also closely related to α-amylase inhibitory activity. The EtOAc and hexane extracts of B. mori showed similar inhibition potential to acarbose and tacrine against α-amylase and AChE, respectively. The hexane extract of O. fuscidentalis exhibited comparable tyrosinase inhibitory activity to kojic acid. n-Hexadecanoic acid and oleic acid were the predominant bioactive compounds in all of the extracts. A kinetic study revealed that n-hexadecanoic acid acted as a mixed-type inhibitor against α-amylase, similar to acarbose, whereas oleic acid showed non-competitive inhibition against AChE, unlike tacrine. Docking studies suggested that these fatty acids bind to the active sites of α-amylase and AChE.</p><p><strong>Conclusion: </strong>The findings suggest that n-hexadecanoic acid and oleic acid from edible insects could be potential candidates for treating diabetes mellitus and Alzheimer's disease. An animal model might be used for further examination to confirm these findings. © 2025 Society of Chemical Industry.</p>","PeriodicalId":17725,"journal":{"name":"Journal of the Science of Food and Agriculture","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition potential of n-hexadecanoic and oleic acids from edible insects against α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase: in vitro and in silico studies.\",\"authors\":\"Kanokorn Wechakorn, Apirak Payaka, Jintana Masoongnoen, Sukrit Wattanalaorsomboon, Sompong Sansenya\",\"doi\":\"10.1002/jsfa.14121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.</p><p><strong>Results: </strong>The total phenolic content of the edible insect extracts correlated with enzyme inhibitory activity. The quercetin and kaempferol content of B. mori ethyl acetate (EtOAc) extract was also closely related to α-amylase inhibitory activity. The EtOAc and hexane extracts of B. mori showed similar inhibition potential to acarbose and tacrine against α-amylase and AChE, respectively. The hexane extract of O. fuscidentalis exhibited comparable tyrosinase inhibitory activity to kojic acid. n-Hexadecanoic acid and oleic acid were the predominant bioactive compounds in all of the extracts. A kinetic study revealed that n-hexadecanoic acid acted as a mixed-type inhibitor against α-amylase, similar to acarbose, whereas oleic acid showed non-competitive inhibition against AChE, unlike tacrine. Docking studies suggested that these fatty acids bind to the active sites of α-amylase and AChE.</p><p><strong>Conclusion: </strong>The findings suggest that n-hexadecanoic acid and oleic acid from edible insects could be potential candidates for treating diabetes mellitus and Alzheimer's disease. An animal model might be used for further examination to confirm these findings. © 2025 Society of Chemical Industry.</p>\",\"PeriodicalId\":17725,\"journal\":{\"name\":\"Journal of the Science of Food and Agriculture\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Science of Food and Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/jsfa.14121\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Science of Food and Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/jsfa.14121","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

背景:食用昆虫因其丰富的生物活性化合物而被用于消费和传统医药。本研究考察了家蚕和fuscidentalis粗提物对α-葡萄糖苷酶、α-淀粉酶、乙酰胆碱酯酶(AChE)和酪氨酸酶的活性成分及其抑制作用。在提取物中鉴定出脂肪酸,包括正十六酸和油酸,并在体外和硅中评估了它们对酶的抑制潜力。结果:食用昆虫提取物总酚含量与酶抑制活性呈正相关。森柏乙酸乙酯提取物的槲皮素和山奈酚含量也与α-淀粉酶抑制活性密切相关。家蚕EtOAc和己烷提取物分别对阿卡波糖和他林对α-淀粉酶和AChE具有相似的抑制作用。荆芥己烷提取物对酪氨酸酶的抑制活性与曲酸相当。正十六酸和油酸是所有提取物中主要的生物活性化合物。动力学研究表明,正十六酸对α-淀粉酶具有混合型抑制作用,类似于阿卡波糖,而油酸对乙酰胆碱具有非竞争性抑制作用,与他克林不同。对接研究表明,这些脂肪酸与α-淀粉酶和AChE的活性位点结合。结论:食用昆虫中提取的正十六酸和油酸可能是治疗糖尿病和阿尔茨海默病的潜在候选物质。动物模型可用于进一步检查以证实这些发现。©2025化学工业协会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Inhibition potential of n-hexadecanoic and oleic acids from edible insects against α-glucosidase, α-amylase, tyrosinase, and acetylcholinesterase: in vitro and in silico studies.

Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.

Results: The total phenolic content of the edible insect extracts correlated with enzyme inhibitory activity. The quercetin and kaempferol content of B. mori ethyl acetate (EtOAc) extract was also closely related to α-amylase inhibitory activity. The EtOAc and hexane extracts of B. mori showed similar inhibition potential to acarbose and tacrine against α-amylase and AChE, respectively. The hexane extract of O. fuscidentalis exhibited comparable tyrosinase inhibitory activity to kojic acid. n-Hexadecanoic acid and oleic acid were the predominant bioactive compounds in all of the extracts. A kinetic study revealed that n-hexadecanoic acid acted as a mixed-type inhibitor against α-amylase, similar to acarbose, whereas oleic acid showed non-competitive inhibition against AChE, unlike tacrine. Docking studies suggested that these fatty acids bind to the active sites of α-amylase and AChE.

Conclusion: The findings suggest that n-hexadecanoic acid and oleic acid from edible insects could be potential candidates for treating diabetes mellitus and Alzheimer's disease. An animal model might be used for further examination to confirm these findings. © 2025 Society of Chemical Industry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.10
自引率
4.90%
发文量
634
审稿时长
3.1 months
期刊介绍: The Journal of the Science of Food and Agriculture publishes peer-reviewed original research, reviews, mini-reviews, perspectives and spotlights in these areas, with particular emphasis on interdisciplinary studies at the agriculture/ food interface. Published for SCI by John Wiley & Sons Ltd. SCI (Society of Chemical Industry) is a unique international forum where science meets business on independent, impartial ground. Anyone can join and current Members include consumers, business people, environmentalists, industrialists, farmers, and researchers. The Society offers a chance to share information between sectors as diverse as food and agriculture, pharmaceuticals, biotechnology, materials, chemicals, environmental science and safety. As well as organising educational events, SCI awards a number of prestigious honours and scholarships each year, publishes peer-reviewed journals, and provides Members with news from their sectors in the respected magazine, Chemistry & Industry . Originally established in London in 1881 and in New York in 1894, SCI is a registered charity with Members in over 70 countries.
期刊最新文献
Synergistic immunomodulatory effect of wheat/soybean/sea cucumber peptides in chloramphenicol induced immunosuppression zebrafish. Curcumin delivery based on bovine bone protein hydrolysate-flaxseed gum emulsion carrier: a strategy for stability enhancement and bioaccessibility improvement. Palm-based nanocrystal cellulose-stabilized Pickering emulsions: investigating characteristics, stability and in vitro digestion for potential application as substitution of coconut milk. Stability and molecular interactions in cold-induced hazelnut protein-chlorogenic acid gel. Z-Astaxanthin exhibits superior anti-obesity effects in Caenorhabditis elegans: insights from geometric isomers and signaling pathways.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1