毛毛Rhodomyrtus tomentosa HSF基因家族的全基因组水平研究以及RtHSFA2a和RtHSFA2b在热适应中的功能差异

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2024-12-28 DOI:10.1016/j.plaphy.2024.109460
Hui-Guang Li, Ling Yang, Yujie Fang, Gui Wang, Shanwu Lyu, Shulin Deng
{"title":"毛毛Rhodomyrtus tomentosa HSF基因家族的全基因组水平研究以及RtHSFA2a和RtHSFA2b在热适应中的功能差异","authors":"Hui-Guang Li, Ling Yang, Yujie Fang, Gui Wang, Shanwu Lyu, Shulin Deng","doi":"10.1016/j.plaphy.2024.109460","DOIUrl":null,"url":null,"abstract":"<p><p>Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R. tomentosa. We identified 25 HSF genes in the R. tomentosa genome. They could be classified into three classes: HSFA, HSFB, and HSFC. Gene duplication events are major motivations for the expansion of the RtHSF gene family. Most of the genes in the same subclass share similar conserved motifs and gene structures. The cis-acting elements of the promoter regions of RtHSF genes are related to development, phytohormone signaling, and stress responses, and they vary among the genes even in the same subclass, resulting in different expression patterns. Especially, there exists subfunctionalization in the RtHSFA2 subfamily in responding to various abiotic stresses, viz. RtHSFA2a is sensitive to drought, salt, and cold stresses, whilst RtHSFA2b is mainly induced by heat stress. We further proved that RtHSFA2b might be of more importance in R. tomentosa thermotolerance, for Arabidopsis plants with overexpressed RtHSFA2b outperformed those with RtHSFA2a under heat stress, and RtHSFA2b had much higher transcription activity than RtHSFA2a in regulating certain heat shock response (HSR) genes. RtHSFA2a plays a role in transactivating RtHSFA2b. All these results provide a general prospect of the RtHSF gene family and enclose a basal thermal adaptation mechanism of R. tomentosa.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109460"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A genome-wide-level insight into the HSF gene family of Rhodomyrtus tomentosa and the functional divergence of RtHSFA2a and RtHSFA2b in thermal adaptation.\",\"authors\":\"Hui-Guang Li, Ling Yang, Yujie Fang, Gui Wang, Shanwu Lyu, Shulin Deng\",\"doi\":\"10.1016/j.plaphy.2024.109460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R. tomentosa. We identified 25 HSF genes in the R. tomentosa genome. They could be classified into three classes: HSFA, HSFB, and HSFC. Gene duplication events are major motivations for the expansion of the RtHSF gene family. Most of the genes in the same subclass share similar conserved motifs and gene structures. The cis-acting elements of the promoter regions of RtHSF genes are related to development, phytohormone signaling, and stress responses, and they vary among the genes even in the same subclass, resulting in different expression patterns. Especially, there exists subfunctionalization in the RtHSFA2 subfamily in responding to various abiotic stresses, viz. RtHSFA2a is sensitive to drought, salt, and cold stresses, whilst RtHSFA2b is mainly induced by heat stress. We further proved that RtHSFA2b might be of more importance in R. tomentosa thermotolerance, for Arabidopsis plants with overexpressed RtHSFA2b outperformed those with RtHSFA2a under heat stress, and RtHSFA2b had much higher transcription activity than RtHSFA2a in regulating certain heat shock response (HSR) genes. RtHSFA2a plays a role in transactivating RtHSFA2b. All these results provide a general prospect of the RtHSF gene family and enclose a basal thermal adaptation mechanism of R. tomentosa.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109460\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109460\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109460","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

热休克转录因子(HSF)是植物发育和逆境响应的重要调控因子之一。毛毛Rhohomyrtus tomentosa在适应高温高湿气候方面具有许多优势,但其遗传机制尚不清楚。在这项研究中,我们的目的是表征HSF家族和探讨热适应机制的毛毛鼠。我们在毛毛鼠基因组中鉴定了25个HSF基因。它们可以分为三类:HSFA、HSFB和HSFC。基因复制事件是RtHSF基因家族扩展的主要动机。同一亚类中的大多数基因具有相似的保守基序和基因结构。RtHSF基因启动子区域的顺式作用元件与发育、植物激素信号传导和胁迫反应有关,即使在同一亚类中,它们在基因之间也存在差异,导致不同的表达模式。特别是RtHSFA2亚家族在应对各种非生物胁迫方面存在亚功能化,即RtHSFA2a对干旱、盐和冷胁迫敏感,而RtHSFA2b主要受热胁迫诱导。我们进一步证明了RtHSFA2b可能在毛毛南的耐热性中更重要,因为RtHSFA2b过表达的拟南芥植株在热胁迫下的表现优于RtHSFA2a,并且RtHSFA2b在调节某些热休克反应(HSR)基因方面的转录活性远高于RtHSFA2a。RtHSFA2a在激活RtHSFA2b中起作用。这些结果为RtHSF基因家族的研究提供了广阔的前景,并揭示了毛毛鼠的基本热适应机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A genome-wide-level insight into the HSF gene family of Rhodomyrtus tomentosa and the functional divergence of RtHSFA2a and RtHSFA2b in thermal adaptation.

Heat shock transcription factor (HSF) is one of the most important regulatory elements in plant development and stress response. Rhohomyrtus tomentosa has many advantages in adapting to high temperature and high humidity climates, whereas its inherence has barely been elucidated. In this study, we aimed to characterize the HSF family and investigate the thermal adaptation mechanisms of R. tomentosa. We identified 25 HSF genes in the R. tomentosa genome. They could be classified into three classes: HSFA, HSFB, and HSFC. Gene duplication events are major motivations for the expansion of the RtHSF gene family. Most of the genes in the same subclass share similar conserved motifs and gene structures. The cis-acting elements of the promoter regions of RtHSF genes are related to development, phytohormone signaling, and stress responses, and they vary among the genes even in the same subclass, resulting in different expression patterns. Especially, there exists subfunctionalization in the RtHSFA2 subfamily in responding to various abiotic stresses, viz. RtHSFA2a is sensitive to drought, salt, and cold stresses, whilst RtHSFA2b is mainly induced by heat stress. We further proved that RtHSFA2b might be of more importance in R. tomentosa thermotolerance, for Arabidopsis plants with overexpressed RtHSFA2b outperformed those with RtHSFA2a under heat stress, and RtHSFA2b had much higher transcription activity than RtHSFA2a in regulating certain heat shock response (HSR) genes. RtHSFA2a plays a role in transactivating RtHSFA2b. All these results provide a general prospect of the RtHSF gene family and enclose a basal thermal adaptation mechanism of R. tomentosa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis. Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds. Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach. Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1