{"title":"外源褪黑素通过调节生理反应机制增强荞麦幼苗的耐热性。","authors":"Zemiao Tian, Jiadong He, Zhanyu Wang, Qian Yang, Luping Ma, Yongzhi Qi, Jinbo Li, Yu Meng, Muriel Quinet","doi":"10.1016/j.plaphy.2025.109487","DOIUrl":null,"url":null,"abstract":"<p><p>Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control. Results demonstrated that exogenous MT at different concentrations improved the growth and physiological parameters of buckwheats, ameliorating damage induced by high-temperature stress. Notably, the application of 100 μM MT significantly augmented shoot biomasses of buckwheat seedlings under high-temperature conditions. Furthermore, the MT significantly increased the levels of osmotic adjustment substances and chlorophyll concentrations, enhanced antioxidant enzyme activities, chlorophyll fluorescence parameters, and improved photosynthetic gas exchange parameters in five different varieties of buckwheat. This led to the alleviation of damage to buckwheat seedlings subjected to high-temperature stress. Subsequently, five advanced statistical analysis methods: Principal Component Analysis, Grey Relational Analysis, Path Coefficient Analysis, Membership Function Method, and Coupling Coordination Analysis were employed to delve deeper into the existing data indicators. To summarize, the beneficial effect of exogenous melatonin on seedling growth is primarily achieved through the coordination and regulation of the antioxidant enzyme system and osmotic regulatory substances, ensuring the growth and development of buckwheat seedlings while also improving their heat tolerance. The treatment with a concentration of 100 μM of MT was the most effective.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109487"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms.\",\"authors\":\"Zemiao Tian, Jiadong He, Zhanyu Wang, Qian Yang, Luping Ma, Yongzhi Qi, Jinbo Li, Yu Meng, Muriel Quinet\",\"doi\":\"10.1016/j.plaphy.2025.109487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control. Results demonstrated that exogenous MT at different concentrations improved the growth and physiological parameters of buckwheats, ameliorating damage induced by high-temperature stress. Notably, the application of 100 μM MT significantly augmented shoot biomasses of buckwheat seedlings under high-temperature conditions. Furthermore, the MT significantly increased the levels of osmotic adjustment substances and chlorophyll concentrations, enhanced antioxidant enzyme activities, chlorophyll fluorescence parameters, and improved photosynthetic gas exchange parameters in five different varieties of buckwheat. This led to the alleviation of damage to buckwheat seedlings subjected to high-temperature stress. Subsequently, five advanced statistical analysis methods: Principal Component Analysis, Grey Relational Analysis, Path Coefficient Analysis, Membership Function Method, and Coupling Coordination Analysis were employed to delve deeper into the existing data indicators. To summarize, the beneficial effect of exogenous melatonin on seedling growth is primarily achieved through the coordination and regulation of the antioxidant enzyme system and osmotic regulatory substances, ensuring the growth and development of buckwheat seedlings while also improving their heat tolerance. The treatment with a concentration of 100 μM of MT was the most effective.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109487\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2025.109487\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109487","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Exogenous melatonin enhances heat tolerance in buckwheat seedlings by modulating physiological response mechanisms.
Melatonin (MT) serves as a potent antioxidant in plant organisms, bolstering their resilience to temperature stress. In this study, the impact of MT on various buckwheat varieties under high-temperature stress conditions (40 °C) was investigated. Specifically, five buckwheat seedling varieties, comprising three sweet buckwheat variants (Fagopyrum esculentum) and two bitter buckwheat types (Fagopyrum tataricum), were subjected to foliar sprays of melatonin at concentrations of 50, 100 and 200 μM, with water at 25 °C employed as a control. Results demonstrated that exogenous MT at different concentrations improved the growth and physiological parameters of buckwheats, ameliorating damage induced by high-temperature stress. Notably, the application of 100 μM MT significantly augmented shoot biomasses of buckwheat seedlings under high-temperature conditions. Furthermore, the MT significantly increased the levels of osmotic adjustment substances and chlorophyll concentrations, enhanced antioxidant enzyme activities, chlorophyll fluorescence parameters, and improved photosynthetic gas exchange parameters in five different varieties of buckwheat. This led to the alleviation of damage to buckwheat seedlings subjected to high-temperature stress. Subsequently, five advanced statistical analysis methods: Principal Component Analysis, Grey Relational Analysis, Path Coefficient Analysis, Membership Function Method, and Coupling Coordination Analysis were employed to delve deeper into the existing data indicators. To summarize, the beneficial effect of exogenous melatonin on seedling growth is primarily achieved through the coordination and regulation of the antioxidant enzyme system and osmotic regulatory substances, ensuring the growth and development of buckwheat seedlings while also improving their heat tolerance. The treatment with a concentration of 100 μM of MT was the most effective.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.