月球极地钻孔试验用热真空风化层环境模拟器

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE Acta Astronautica Pub Date : 2025-01-07 DOI:10.1016/j.actaastro.2025.01.002
Peineng Zhong, Lusi Wang, Guangfei Zhang, Xiayu Li, Jinchang Xu, Qichen Sun, Suping Wang, Suolai Zhang, Chu Wang, Lei Chen, Xu Yang, Kun Xu, Xilun Ding, Tao Zhang
{"title":"月球极地钻孔试验用热真空风化层环境模拟器","authors":"Peineng Zhong, Lusi Wang, Guangfei Zhang, Xiayu Li, Jinchang Xu, Qichen Sun, Suping Wang, Suolai Zhang, Chu Wang, Lei Chen, Xu Yang, Kun Xu, Xilun Ding, Tao Zhang","doi":"10.1016/j.actaastro.2025.01.002","DOIUrl":null,"url":null,"abstract":"Water ice, extensively detected in the lunar south polar region, represents a valuable resource for future lunar base construction and energy utilization. To gain a comprehensive understanding of the origin, distribution, and properties of water ice in the lunar polar regions, on-site measurement is essential. In alignment with this goal, China’s Chang’E 7 mission, scheduled for launch in 2026, aims to explore water ice within permanently shadowed regions of the lunar south pole through drilling and <ce:italic>in-situ</ce:italic> measurement of water content. This work presents the design and development of a thermal-vacuum regolith environment simulator, specifically created to test the performance of a robotic drill under conditions simulating the icy lunar regolith of the lunar polar environment. The simulator comprises a vacuum acquisition system, a cryogenic cooling system, and a preparation system for icy lunar regolith simulant. Additionally, the simulator can effectively adjust the position of the lunar regolith container and visually monitor it. The vacuum acquisition system provides a low-pressure environment suitable for drilling tests with icy lunar regolith simulant, while the cryogenic cooling system refrigerates the simulant to a temperature as low as 95 K (<mml:math altimg=\"si22.svg\" display=\"inline\"><mml:mrow><mml:mo>−</mml:mo><mml:mn>178</mml:mn></mml:mrow></mml:math> °C). The regolith preparation system, moreover, enables controlled mixing and compaction of regolith simulant to specific bulk densities and water contents. To enhance testing efficiency in simulated thermal-vacuum environments, the simulator includes a rotation mechanism that allows multiple drilling tests within a single environmental setup by adjusting the position of the regolith container. Experimental validation confirms the capacity of the simulator to replicate conditions similar to those in lunar polar regions. Specifically, the vacuum acquisition system can pump the chamber to a pressure in the order of <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> Pa when loaded with icy lunar regolith simulant, and the cryogenic cooling system can refrigerate the regolith simulant with water contents of 0.5 wt% and 4 wt% to 95 K. This work can provide essential ground-testing support and technical validation for the upcoming drilling and sampling tasks of the Chinese Chang’E 7 mission.","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"128 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal-vacuum regolith environment simulator for drilling tests in lunar polar regions\",\"authors\":\"Peineng Zhong, Lusi Wang, Guangfei Zhang, Xiayu Li, Jinchang Xu, Qichen Sun, Suping Wang, Suolai Zhang, Chu Wang, Lei Chen, Xu Yang, Kun Xu, Xilun Ding, Tao Zhang\",\"doi\":\"10.1016/j.actaastro.2025.01.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water ice, extensively detected in the lunar south polar region, represents a valuable resource for future lunar base construction and energy utilization. To gain a comprehensive understanding of the origin, distribution, and properties of water ice in the lunar polar regions, on-site measurement is essential. In alignment with this goal, China’s Chang’E 7 mission, scheduled for launch in 2026, aims to explore water ice within permanently shadowed regions of the lunar south pole through drilling and <ce:italic>in-situ</ce:italic> measurement of water content. This work presents the design and development of a thermal-vacuum regolith environment simulator, specifically created to test the performance of a robotic drill under conditions simulating the icy lunar regolith of the lunar polar environment. The simulator comprises a vacuum acquisition system, a cryogenic cooling system, and a preparation system for icy lunar regolith simulant. Additionally, the simulator can effectively adjust the position of the lunar regolith container and visually monitor it. The vacuum acquisition system provides a low-pressure environment suitable for drilling tests with icy lunar regolith simulant, while the cryogenic cooling system refrigerates the simulant to a temperature as low as 95 K (<mml:math altimg=\\\"si22.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>−</mml:mo><mml:mn>178</mml:mn></mml:mrow></mml:math> °C). The regolith preparation system, moreover, enables controlled mixing and compaction of regolith simulant to specific bulk densities and water contents. To enhance testing efficiency in simulated thermal-vacuum environments, the simulator includes a rotation mechanism that allows multiple drilling tests within a single environmental setup by adjusting the position of the regolith container. Experimental validation confirms the capacity of the simulator to replicate conditions similar to those in lunar polar regions. Specifically, the vacuum acquisition system can pump the chamber to a pressure in the order of <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mn>1</mml:mn><mml:msup><mml:mrow><mml:mn>0</mml:mn></mml:mrow><mml:mrow><mml:mo>−</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math> Pa when loaded with icy lunar regolith simulant, and the cryogenic cooling system can refrigerate the regolith simulant with water contents of 0.5 wt% and 4 wt% to 95 K. This work can provide essential ground-testing support and technical validation for the upcoming drilling and sampling tasks of the Chinese Chang’E 7 mission.\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"128 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actaastro.2025.01.002\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.actaastro.2025.01.002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

水冰在月球南极地区被广泛发现,是未来月球基地建设和能源利用的宝贵资源。为了全面了解月球极地地区水冰的起源、分布和性质,现场测量是必不可少的。为了实现这一目标,中国计划于2026年发射的嫦娥7号任务,旨在通过钻探和现场测量含水量,探索月球南极永久阴影地区的水冰。这项工作介绍了一个热真空风化层环境模拟器的设计和开发,专门用于测试机器人钻头在模拟月球极地环境的冰冷月球风化层条件下的性能。该模拟器包括真空采集系统、低温冷却系统和冰冻月球表土模拟物制备系统。此外,该模拟器还可以有效地调整月球风化层容器的位置并对其进行可视化监测。真空采集系统提供了一个适合用冰冷的月球表层模拟物进行钻探试验的低压环境,而低温冷却系统将模拟物冷却到95 K(- 178℃)的低温。此外,该风土制备系统能够控制风土模拟物的混合和压实,使其达到特定的容重和含水量。为了提高模拟热真空环境下的测试效率,该模拟器包括一个旋转机制,通过调整风化层容器的位置,可以在一个环境设置中进行多次钻井测试。实验验证证实,模拟器有能力复制类似于月球极地地区的条件。具体来说,真空采集系统可以将装载冰冷的月球风化模拟物的腔室泵至10−1 Pa左右的压力,低温冷却系统可以将含水量为0.5 wt%和4 wt%的模拟风化模拟物冷却至95 K。这项工作可以为即将到来的中国嫦娥7号任务的钻探和采样任务提供必要的地面测试支持和技术验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal-vacuum regolith environment simulator for drilling tests in lunar polar regions
Water ice, extensively detected in the lunar south polar region, represents a valuable resource for future lunar base construction and energy utilization. To gain a comprehensive understanding of the origin, distribution, and properties of water ice in the lunar polar regions, on-site measurement is essential. In alignment with this goal, China’s Chang’E 7 mission, scheduled for launch in 2026, aims to explore water ice within permanently shadowed regions of the lunar south pole through drilling and in-situ measurement of water content. This work presents the design and development of a thermal-vacuum regolith environment simulator, specifically created to test the performance of a robotic drill under conditions simulating the icy lunar regolith of the lunar polar environment. The simulator comprises a vacuum acquisition system, a cryogenic cooling system, and a preparation system for icy lunar regolith simulant. Additionally, the simulator can effectively adjust the position of the lunar regolith container and visually monitor it. The vacuum acquisition system provides a low-pressure environment suitable for drilling tests with icy lunar regolith simulant, while the cryogenic cooling system refrigerates the simulant to a temperature as low as 95 K (178 °C). The regolith preparation system, moreover, enables controlled mixing and compaction of regolith simulant to specific bulk densities and water contents. To enhance testing efficiency in simulated thermal-vacuum environments, the simulator includes a rotation mechanism that allows multiple drilling tests within a single environmental setup by adjusting the position of the regolith container. Experimental validation confirms the capacity of the simulator to replicate conditions similar to those in lunar polar regions. Specifically, the vacuum acquisition system can pump the chamber to a pressure in the order of 101 Pa when loaded with icy lunar regolith simulant, and the cryogenic cooling system can refrigerate the regolith simulant with water contents of 0.5 wt% and 4 wt% to 95 K. This work can provide essential ground-testing support and technical validation for the upcoming drilling and sampling tasks of the Chinese Chang’E 7 mission.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
期刊最新文献
Ferroptosis in space: How microgravity alters iron homeostasis Emission spectroscopy and surface temperature analysis from Hayabusa2 sample return observation Studies on the effect of working fluid and the geometric design of airfoils on the aerodynamic performance of air vehicles operating in Martian atmosphere Generalized Gaussian smoothing homotopy method for solving nonlinear optimal control problems Fast recovery mode for micro-meteoroid impacts: A LISA mission study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1