{"title":"具有神经形态密码学近理论极限不对称因子的热敏有机异质结突触光电晶体管","authors":"Yu Zhang, Meiqiu Dong, Yuhan Du, Shuyuan Yang, Yiwen Ren, Yangwu Guo, Dongning Gao, Xiaolong Lin, Dong Yuan, Guofu Zhou, Yujie Yan, Lingjie Sun, Rongjin Li, Fangxu Yang, Wenping Hu","doi":"10.1016/j.matt.2024.101945","DOIUrl":null,"url":null,"abstract":"Advancing organic photoelectric synapses for circularly polarized light (CPL) detection poses challenges in balancing CPL discrimination and photoelectric conversion efficiency. In this study, we reveal an innovative heterojunction consisting of two-dimensional molecular crystal (2DMC) and cholesteric liquid crystal network (CLCN) film to achieve high-performance CPL-resolved synapses. The periodically ordered molecular packing and molecular-scale thickness of 2DMC amplify the efficient exciton dissociation, consequently endowing the synaptic phototransistor with exceptional responsivity of 3.45 × 10<sup>4</sup> A W<sup>−1</sup>. Harnessing the intrinsic chiroptical of the CLCN film on the 2DMC, the device manifests a distinguished synaptic response to CPL stimuli, as substantiated by a significant dissymmetry factor of 1.97. Furthermore, the binary output states corresponding to distinct excitatory postsynaptic current levels facilitate robust chiroptical data encoding and encryption. Our innovative integration within polarized neuromorphic vision bolsters the capabilities of photonic devices and ushers in new frontiers for secure visual data encoding and transmission.","PeriodicalId":388,"journal":{"name":"Matter","volume":"58 1","pages":""},"PeriodicalIF":17.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chiroptical organic heterojunction synaptic phototransistor exhibiting near-theoretical limit asymmetry factor for neuromorphic cryptography\",\"authors\":\"Yu Zhang, Meiqiu Dong, Yuhan Du, Shuyuan Yang, Yiwen Ren, Yangwu Guo, Dongning Gao, Xiaolong Lin, Dong Yuan, Guofu Zhou, Yujie Yan, Lingjie Sun, Rongjin Li, Fangxu Yang, Wenping Hu\",\"doi\":\"10.1016/j.matt.2024.101945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advancing organic photoelectric synapses for circularly polarized light (CPL) detection poses challenges in balancing CPL discrimination and photoelectric conversion efficiency. In this study, we reveal an innovative heterojunction consisting of two-dimensional molecular crystal (2DMC) and cholesteric liquid crystal network (CLCN) film to achieve high-performance CPL-resolved synapses. The periodically ordered molecular packing and molecular-scale thickness of 2DMC amplify the efficient exciton dissociation, consequently endowing the synaptic phototransistor with exceptional responsivity of 3.45 × 10<sup>4</sup> A W<sup>−1</sup>. Harnessing the intrinsic chiroptical of the CLCN film on the 2DMC, the device manifests a distinguished synaptic response to CPL stimuli, as substantiated by a significant dissymmetry factor of 1.97. Furthermore, the binary output states corresponding to distinct excitatory postsynaptic current levels facilitate robust chiroptical data encoding and encryption. Our innovative integration within polarized neuromorphic vision bolsters the capabilities of photonic devices and ushers in new frontiers for secure visual data encoding and transmission.\",\"PeriodicalId\":388,\"journal\":{\"name\":\"Matter\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":17.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matter\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.matt.2024.101945\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.matt.2024.101945","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
圆偏振光检测有机光电突触的发展对平衡圆偏振光识别和光电转换效率提出了挑战。在这项研究中,我们揭示了一种由二维分子晶体(2DMC)和胆酯液晶网络(CLCN)薄膜组成的创新异质结,以实现高性能的cpll分辨突触。2DMC周期性有序的分子堆积和分子尺度的厚度增强了激子的有效解离,从而使突触光电晶体管具有3.45 × 104 A W−1的卓越响应率。利用CLCN薄膜在2DMC上的固有热效应,该装置对CPL刺激表现出明显的突触反应,其不对称系数为1.97。此外,对应于不同兴奋性突触后电流水平的二进制输出状态有助于稳健的手性数据编码和加密。我们在极化神经形态视觉中的创新集成增强了光子设备的能力,并为安全视觉数据编码和传输开辟了新的领域。
Advancing organic photoelectric synapses for circularly polarized light (CPL) detection poses challenges in balancing CPL discrimination and photoelectric conversion efficiency. In this study, we reveal an innovative heterojunction consisting of two-dimensional molecular crystal (2DMC) and cholesteric liquid crystal network (CLCN) film to achieve high-performance CPL-resolved synapses. The periodically ordered molecular packing and molecular-scale thickness of 2DMC amplify the efficient exciton dissociation, consequently endowing the synaptic phototransistor with exceptional responsivity of 3.45 × 104 A W−1. Harnessing the intrinsic chiroptical of the CLCN film on the 2DMC, the device manifests a distinguished synaptic response to CPL stimuli, as substantiated by a significant dissymmetry factor of 1.97. Furthermore, the binary output states corresponding to distinct excitatory postsynaptic current levels facilitate robust chiroptical data encoding and encryption. Our innovative integration within polarized neuromorphic vision bolsters the capabilities of photonic devices and ushers in new frontiers for secure visual data encoding and transmission.
期刊介绍:
Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content.
Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.