基于U-net骨干网的混合自适应傅里叶神经算子加速相场模拟

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL npj Computational Materials Pub Date : 2025-01-13 DOI:10.1038/s41524-024-01488-z
Christophe Bonneville, Nathan Bieberdorf, Arun Hegde, Mark Asta, Habib N. Najm, Laurent Capolungo, Cosmin Safta
{"title":"基于U-net骨干网的混合自适应傅里叶神经算子加速相场模拟","authors":"Christophe Bonneville, Nathan Bieberdorf, Arun Hegde, Mark Asta, Habib N. Najm, Laurent Capolungo, Cosmin Safta","doi":"10.1038/s41524-024-01488-z","DOIUrl":null,"url":null,"abstract":"<p>Prolonged contact between a corrosive liquid and metal alloys can cause progressive dealloying. For one such process as liquid-metal dealloying (LMD), phase field models have been developed to understand the mechanisms leading to complex morphologies. However, the LMD governing equations in these models often involve coupled non-linear partial differential equations (PDE), which are challenging to solve numerically. In particular, numerical stiffness in the PDEs requires an extremely refined time step size (on the order of 10<sup>−12</sup><i>s</i> or smaller). This computational bottleneck is especially problematic when running LMD simulation until a late time horizon is required. This motivates the development of surrogate models capable of leaping forward in time, by skipping several consecutive time steps at-once. In this paper, we propose a U-shaped adaptive Fourier neural operator (U-AFNO), a machine learning (ML) based model inspired by recent advances in neural operator learning. U-AFNO employs U-Nets for extracting and reconstructing local features within the physical fields, and passes the latent space through a vision transformer (ViT) implemented in the Fourier space (AFNO). We use U-AFNOs to learn the dynamics of mapping the field at a current time step into a later time step. We also identify global quantities of interest (QoI) describing the corrosion process (e.g., the deformation of the liquid-metal interface, lost metal, etc.) and show that our proposed U-AFNO model is able to accurately predict the field dynamics, in spite of the chaotic nature of LMD. Most notably, our model reproduces the key microstructure statistics and QoIs with a level of accuracy on par with the high-fidelity numerical solver, while achieving a significant 11, 200 × speed-up on a high-resolution grid when comparing the computational expense per time step. Finally, we also investigate the opportunity of using hybrid simulations, in which we alternate forward leaps in time using the U-AFNO with high-fidelity time stepping. We demonstrate that while advantageous for some surrogate model design choices, our proposed U-AFNO model in fully auto-regressive settings consistently outperforms hybrid schemes.</p>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"29 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating phase field simulations through a hybrid adaptive Fourier neural operator with U-net backbone\",\"authors\":\"Christophe Bonneville, Nathan Bieberdorf, Arun Hegde, Mark Asta, Habib N. Najm, Laurent Capolungo, Cosmin Safta\",\"doi\":\"10.1038/s41524-024-01488-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Prolonged contact between a corrosive liquid and metal alloys can cause progressive dealloying. For one such process as liquid-metal dealloying (LMD), phase field models have been developed to understand the mechanisms leading to complex morphologies. However, the LMD governing equations in these models often involve coupled non-linear partial differential equations (PDE), which are challenging to solve numerically. In particular, numerical stiffness in the PDEs requires an extremely refined time step size (on the order of 10<sup>−12</sup><i>s</i> or smaller). This computational bottleneck is especially problematic when running LMD simulation until a late time horizon is required. This motivates the development of surrogate models capable of leaping forward in time, by skipping several consecutive time steps at-once. In this paper, we propose a U-shaped adaptive Fourier neural operator (U-AFNO), a machine learning (ML) based model inspired by recent advances in neural operator learning. U-AFNO employs U-Nets for extracting and reconstructing local features within the physical fields, and passes the latent space through a vision transformer (ViT) implemented in the Fourier space (AFNO). We use U-AFNOs to learn the dynamics of mapping the field at a current time step into a later time step. We also identify global quantities of interest (QoI) describing the corrosion process (e.g., the deformation of the liquid-metal interface, lost metal, etc.) and show that our proposed U-AFNO model is able to accurately predict the field dynamics, in spite of the chaotic nature of LMD. Most notably, our model reproduces the key microstructure statistics and QoIs with a level of accuracy on par with the high-fidelity numerical solver, while achieving a significant 11, 200 × speed-up on a high-resolution grid when comparing the computational expense per time step. Finally, we also investigate the opportunity of using hybrid simulations, in which we alternate forward leaps in time using the U-AFNO with high-fidelity time stepping. We demonstrate that while advantageous for some surrogate model design choices, our proposed U-AFNO model in fully auto-regressive settings consistently outperforms hybrid schemes.</p>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-024-01488-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-024-01488-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

腐蚀性液体与金属合金的长时间接触会导致逐渐的脱合金化。对于液态金属脱合金(LMD)这样的过程,相场模型已经被开发出来以理解导致复杂形貌的机制。然而,这些模型中的LMD控制方程通常涉及耦合非线性偏微分方程(PDE),这对数值求解具有挑战性。特别是,偏微分方程中的数值刚度需要非常精细的时间步长(在10−12s或更小的数量级上)。当运行LMD模拟直到需要较晚的时间范围时,这个计算瓶颈尤其成问题。这激发了代理模型的发展,通过一次跳过几个连续的时间步骤,能够在时间上向前跳跃。在本文中,我们提出了一种u形自适应傅立叶神经算子(U-AFNO),这是一种基于机器学习(ML)的模型,灵感来自神经算子学习的最新进展。U-AFNO利用U-Nets对物理场内的局部特征进行提取和重构,并通过在傅里叶空间(AFNO)中实现的视觉变换(ViT)传递潜在空间。我们使用u - afno来学习将当前时间步长的场映射到以后时间步长的动力学。我们还确定了描述腐蚀过程的全局感兴趣量(qi)(例如,液态金属界面的变形,丢失的金属等),并表明我们提出的U-AFNO模型能够准确预测场动力学,尽管LMD具有混沌性。最值得注意的是,我们的模型以与高保真数值求解器相当的精度再现了关键的微观结构统计数据和qi,同时在比较每个时间步长的计算费用时,在高分辨率网格上实现了11,200倍的显着加速。最后,我们还研究了使用混合模拟的机会,在混合模拟中,我们使用具有高保真时间步进的U-AFNO在时间上交替向前跳跃。我们证明,虽然对一些替代模型设计选择有利,但我们提出的U-AFNO模型在完全自回归设置下始终优于混合方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating phase field simulations through a hybrid adaptive Fourier neural operator with U-net backbone

Prolonged contact between a corrosive liquid and metal alloys can cause progressive dealloying. For one such process as liquid-metal dealloying (LMD), phase field models have been developed to understand the mechanisms leading to complex morphologies. However, the LMD governing equations in these models often involve coupled non-linear partial differential equations (PDE), which are challenging to solve numerically. In particular, numerical stiffness in the PDEs requires an extremely refined time step size (on the order of 10−12s or smaller). This computational bottleneck is especially problematic when running LMD simulation until a late time horizon is required. This motivates the development of surrogate models capable of leaping forward in time, by skipping several consecutive time steps at-once. In this paper, we propose a U-shaped adaptive Fourier neural operator (U-AFNO), a machine learning (ML) based model inspired by recent advances in neural operator learning. U-AFNO employs U-Nets for extracting and reconstructing local features within the physical fields, and passes the latent space through a vision transformer (ViT) implemented in the Fourier space (AFNO). We use U-AFNOs to learn the dynamics of mapping the field at a current time step into a later time step. We also identify global quantities of interest (QoI) describing the corrosion process (e.g., the deformation of the liquid-metal interface, lost metal, etc.) and show that our proposed U-AFNO model is able to accurately predict the field dynamics, in spite of the chaotic nature of LMD. Most notably, our model reproduces the key microstructure statistics and QoIs with a level of accuracy on par with the high-fidelity numerical solver, while achieving a significant 11, 200 × speed-up on a high-resolution grid when comparing the computational expense per time step. Finally, we also investigate the opportunity of using hybrid simulations, in which we alternate forward leaps in time using the U-AFNO with high-fidelity time stepping. We demonstrate that while advantageous for some surrogate model design choices, our proposed U-AFNO model in fully auto-regressive settings consistently outperforms hybrid schemes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
期刊最新文献
SPACIER: on-demand polymer design with fully automated all-atom classical molecular dynamics integrated into machine learning pipelines Exploring parameter dependence of atomic minima with implicit differentiation Active oversight and quality control in standard Bayesian optimization for autonomous experiments Feature engineering descriptors, transforms, and machine learning for grain boundaries and variable-sized atom clusters Machine learning Hubbard parameters with equivariant neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1