IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Cheminformatics Pub Date : 2025-01-13 DOI:10.1186/s13321-025-00946-0
Matteo P. Ferla, Rubén Sánchez-García, Rachael E. Skyner, Stefan Gahbauer, Jenny C. Taylor, Frank von Delft, Brian D. Marsden, Charlotte M. Deane
{"title":"Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology","authors":"Matteo P. Ferla,&nbsp;Rubén Sánchez-García,&nbsp;Rachael E. Skyner,&nbsp;Stefan Gahbauer,&nbsp;Jenny C. Taylor,&nbsp;Frank von Delft,&nbsp;Brian D. Marsden,&nbsp;Charlotte M. Deane","doi":"10.1186/s13321-025-00946-0","DOIUrl":null,"url":null,"abstract":"<div><p>Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that ‘stitches’ the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein–ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode. Fragmenstein either takes the atomic coordinates of ligands from a experimental fragment screen and combines the atoms together to produce a novel merged virtual compound, or uses them to predict the bound complex for a provided molecule. The molecule is then energy minimised under strong constraints to obtain a structurally plausible conformer. The code is available at https://github.com/oxpig/Fragmenstein.</p><p><b>Scientific contribution</b></p><p>This work shows the importance of using the coordinates of known binders when predicting the conformation of derivative molecules through a retrospective analysis of the COVID Moonshot data. This method has had a prior real-world application in hit-to-lead screening, yielding a sub-micromolar merger from parent hits in a single round. It is therefore likely to further benefit future drug design campaigns and be integrated in future pipelines.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-00946-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-00946-0","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

目前以合并或连接基于片段的药物设计(FBDD)晶体学筛选的初始命中为中心的策略,通常不能完全充分利用三维结构信息。我们的研究表明,与药理约束对接等一般方法相比,将结构信息中的配体原子 "缝合 "在一起的算法方法(Fragmenstein)能更准确、更可靠地预测蛋白质-配体复合物的构象。这种方法是在保守结合的假设下工作的:当设计一个包含初始片段的更大分子时,两者之间的共同子结构将采用相同的结合模式。Fragmenstein 要么从实验片段筛选中获取配体的原子坐标,并将这些原子组合在一起生成一个新的合并虚拟化合物,要么使用这些原子坐标预测所提供分子的结合复合物。然后在强约束条件下对分子进行能量最小化,以获得结构上合理的构象。代码可在 https://github.com/oxpig/Fragmenstein 上获取。科学贡献 这项工作通过对 COVID Moonshot 数据的回顾性分析,说明了在预测衍生分子构象时使用已知结合体坐标的重要性。这种方法之前已在现实世界中应用于 "命中到先导 "筛选,在一轮筛选中就从母体命中分子中获得了亚微摩级的合并。因此,它有可能进一步有益于未来的药物设计活动,并被整合到未来的流水线中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology

Current strategies centred on either merging or linking initial hits from fragment-based drug design (FBDD) crystallographic screens generally do not fully leaverage 3D structural information. We show that an algorithmic approach (Fragmenstein) that ‘stitches’ the ligand atoms from this structural information together can provide more accurate and reliable predictions for protein–ligand complex conformation than general methods such as pharmacophore-constrained docking. This approach works under the assumption of conserved binding: when a larger molecule is designed containing the initial fragment hit, the common substructure between the two will adopt the same binding mode. Fragmenstein either takes the atomic coordinates of ligands from a experimental fragment screen and combines the atoms together to produce a novel merged virtual compound, or uses them to predict the bound complex for a provided molecule. The molecule is then energy minimised under strong constraints to obtain a structurally plausible conformer. The code is available at https://github.com/oxpig/Fragmenstein.

Scientific contribution

This work shows the importance of using the coordinates of known binders when predicting the conformation of derivative molecules through a retrospective analysis of the COVID Moonshot data. This method has had a prior real-world application in hit-to-lead screening, yielding a sub-micromolar merger from parent hits in a single round. It is therefore likely to further benefit future drug design campaigns and be integrated in future pipelines.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
期刊最新文献
One size does not fit all: revising traditional paradigms for assessing accuracy of QSAR models used for virtual screening Chemical space as a unifying theme for chemistry Context-dependent similarity analysis of analogue series for structure–activity relationship transfer based on a concept from natural language processing Fragmenstein: predicting protein–ligand structures of compounds derived from known crystallographic fragment hits using a strict conserved-binding–based methodology ADMET evaluation in drug discovery: 21. Application and industrial validation of machine learning algorithms for Caco-2 permeability prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1