从6,497双标签水测量得出的预测方程可以检测错误的自我报告的能量摄入

IF 23.6 Q1 FOOD SCIENCE & TECHNOLOGY Nature food Pub Date : 2025-01-13 DOI:10.1038/s43016-024-01089-5
Rania Bajunaid, Chaoqun Niu, Catherine Hambly, Zongfang Liu, Yosuke Yamada, Heliodoro Aleman-Mateo, Liam J. Anderson, Lenore Arab, Issad Baddou, Linda Bandini, Kweku Bedu-Addo, Ellen E. Blaak, Carlijn V. C. Bouten, Soren Brage, Maciej S. Buchowski, Nancy F. Butte, Stefan G. J. A. Camps, Regina Casper, Graeme L. Close, Jamie A. Cooper, Richard Cooper, Sai Krupa Das, Peter S. W. Davies, Prasangi Dabare, Lara R. Dugas, Simon Eaton, Ulf Ekelund, Sonja Entringer, Terrence Forrester, Barry W. Fudge, Melanie Gillingham, Annelies H. Goris, Michael Gurven, Asmaa El Hamdouchi, Hinke H. Haisma, Daniel Hoffman, Marije B. Hoos, Sumei Hu, Noorjehan Joonas, Annemiek M. Joosen, Peter Katzmarzyk, Misaka Kimura, William E. Kraus, Wantanee Kriengsinyos, Rebecca Kuriyan, Robert F. Kushner, Estelle V. Lambert, Pulani Lanerolle, Christel L. Larsson, William R. Leonard, Nader Lessan, Marie Löf, Corby K. Martin, Eric Matsiko, Anine C. Medin, James C. Morehen, James P. Morton, Aviva Must, Marian L. Neuhouser, Theresa A. Nicklas, Christine D. Nyström, Robert M. Ojiambo, Kirsi H. Pietiläinen, Yannis P. Pitsiladis, Jacob Plange-Rhule, Guy Plasqui, Ross L. Prentice, Susan B. Racette, David A. Raichlen, Eric Ravussin, Leanne M. Redman, John J. Reilly, Rebecca Reynolds, Susan B. Roberts, Dulani Samaranayakem, Luis B. Sardinha, Analiza M. Silva, Anders M. Sjödin, Marina Stamatiou, Eric Stice, Samuel S. Urlacher, Ludo M. Van Etten, Edgar G. A. H. van Mil, George Wilson, Jack A. Yanovski, Tsukasa Yoshida, Xueying Zhang, Alexia J. Murphy-Alford, Srishti Sinha, Cornelia U. Loechl, Amy H. Luke, Herman Pontzer, Jennifer Rood, Hiroyuki Sagayama, Dale A. Schoeller, Klaas R. Westerterp, William W. Wong, John R. Speakman
{"title":"从6,497双标签水测量得出的预测方程可以检测错误的自我报告的能量摄入","authors":"Rania Bajunaid, Chaoqun Niu, Catherine Hambly, Zongfang Liu, Yosuke Yamada, Heliodoro Aleman-Mateo, Liam J. Anderson, Lenore Arab, Issad Baddou, Linda Bandini, Kweku Bedu-Addo, Ellen E. Blaak, Carlijn V. C. Bouten, Soren Brage, Maciej S. Buchowski, Nancy F. Butte, Stefan G. J. A. Camps, Regina Casper, Graeme L. Close, Jamie A. Cooper, Richard Cooper, Sai Krupa Das, Peter S. W. Davies, Prasangi Dabare, Lara R. Dugas, Simon Eaton, Ulf Ekelund, Sonja Entringer, Terrence Forrester, Barry W. Fudge, Melanie Gillingham, Annelies H. Goris, Michael Gurven, Asmaa El Hamdouchi, Hinke H. Haisma, Daniel Hoffman, Marije B. Hoos, Sumei Hu, Noorjehan Joonas, Annemiek M. Joosen, Peter Katzmarzyk, Misaka Kimura, William E. Kraus, Wantanee Kriengsinyos, Rebecca Kuriyan, Robert F. Kushner, Estelle V. Lambert, Pulani Lanerolle, Christel L. Larsson, William R. Leonard, Nader Lessan, Marie Löf, Corby K. Martin, Eric Matsiko, Anine C. Medin, James C. Morehen, James P. Morton, Aviva Must, Marian L. Neuhouser, Theresa A. Nicklas, Christine D. Nyström, Robert M. Ojiambo, Kirsi H. Pietiläinen, Yannis P. Pitsiladis, Jacob Plange-Rhule, Guy Plasqui, Ross L. Prentice, Susan B. Racette, David A. Raichlen, Eric Ravussin, Leanne M. Redman, John J. Reilly, Rebecca Reynolds, Susan B. Roberts, Dulani Samaranayakem, Luis B. Sardinha, Analiza M. Silva, Anders M. Sjödin, Marina Stamatiou, Eric Stice, Samuel S. Urlacher, Ludo M. Van Etten, Edgar G. A. H. van Mil, George Wilson, Jack A. Yanovski, Tsukasa Yoshida, Xueying Zhang, Alexia J. Murphy-Alford, Srishti Sinha, Cornelia U. Loechl, Amy H. Luke, Herman Pontzer, Jennifer Rood, Hiroyuki Sagayama, Dale A. Schoeller, Klaas R. Westerterp, William W. Wong, John R. Speakman","doi":"10.1038/s43016-024-01089-5","DOIUrl":null,"url":null,"abstract":"Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years. The resultant regression equation predicts expected TEE from easily acquired variables, such as body weight, age and sex, with 95% predictive limits that can be used to screen for misreporting by participants in dietary studies. We applied the equation to two large datasets (National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) and found that the level of misreporting was >50%. The macronutrient composition from dietary reports in these studies was systematically biased as the level of misreporting increased, leading to potentially spurious associations between diet components and body mass index. This study presents a predictive equation for total energy expenditure derived from doubly labelled water measurements. Applying this equation to two large datasets (the National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) shows that the misreporting of total energy intake is greater than 50%, with important implications for macronutrient availability.","PeriodicalId":94151,"journal":{"name":"Nature food","volume":"6 1","pages":"58-71"},"PeriodicalIF":23.6000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43016-024-01089-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Predictive equation derived from 6,497 doubly labelled water measurements enables the detection of erroneous self-reported energy intake\",\"authors\":\"Rania Bajunaid, Chaoqun Niu, Catherine Hambly, Zongfang Liu, Yosuke Yamada, Heliodoro Aleman-Mateo, Liam J. Anderson, Lenore Arab, Issad Baddou, Linda Bandini, Kweku Bedu-Addo, Ellen E. Blaak, Carlijn V. C. Bouten, Soren Brage, Maciej S. Buchowski, Nancy F. Butte, Stefan G. J. A. Camps, Regina Casper, Graeme L. Close, Jamie A. Cooper, Richard Cooper, Sai Krupa Das, Peter S. W. Davies, Prasangi Dabare, Lara R. Dugas, Simon Eaton, Ulf Ekelund, Sonja Entringer, Terrence Forrester, Barry W. Fudge, Melanie Gillingham, Annelies H. Goris, Michael Gurven, Asmaa El Hamdouchi, Hinke H. Haisma, Daniel Hoffman, Marije B. Hoos, Sumei Hu, Noorjehan Joonas, Annemiek M. Joosen, Peter Katzmarzyk, Misaka Kimura, William E. Kraus, Wantanee Kriengsinyos, Rebecca Kuriyan, Robert F. Kushner, Estelle V. Lambert, Pulani Lanerolle, Christel L. Larsson, William R. Leonard, Nader Lessan, Marie Löf, Corby K. Martin, Eric Matsiko, Anine C. Medin, James C. Morehen, James P. Morton, Aviva Must, Marian L. Neuhouser, Theresa A. Nicklas, Christine D. Nyström, Robert M. Ojiambo, Kirsi H. Pietiläinen, Yannis P. Pitsiladis, Jacob Plange-Rhule, Guy Plasqui, Ross L. Prentice, Susan B. Racette, David A. Raichlen, Eric Ravussin, Leanne M. Redman, John J. Reilly, Rebecca Reynolds, Susan B. Roberts, Dulani Samaranayakem, Luis B. Sardinha, Analiza M. Silva, Anders M. Sjödin, Marina Stamatiou, Eric Stice, Samuel S. Urlacher, Ludo M. Van Etten, Edgar G. A. H. van Mil, George Wilson, Jack A. Yanovski, Tsukasa Yoshida, Xueying Zhang, Alexia J. Murphy-Alford, Srishti Sinha, Cornelia U. Loechl, Amy H. Luke, Herman Pontzer, Jennifer Rood, Hiroyuki Sagayama, Dale A. Schoeller, Klaas R. Westerterp, William W. Wong, John R. Speakman\",\"doi\":\"10.1038/s43016-024-01089-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years. The resultant regression equation predicts expected TEE from easily acquired variables, such as body weight, age and sex, with 95% predictive limits that can be used to screen for misreporting by participants in dietary studies. We applied the equation to two large datasets (National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) and found that the level of misreporting was >50%. The macronutrient composition from dietary reports in these studies was systematically biased as the level of misreporting increased, leading to potentially spurious associations between diet components and body mass index. This study presents a predictive equation for total energy expenditure derived from doubly labelled water measurements. Applying this equation to two large datasets (the National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) shows that the misreporting of total energy intake is greater than 50%, with important implications for macronutrient availability.\",\"PeriodicalId\":94151,\"journal\":{\"name\":\"Nature food\",\"volume\":\"6 1\",\"pages\":\"58-71\"},\"PeriodicalIF\":23.6000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43016-024-01089-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature food\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43016-024-01089-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature food","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43016-024-01089-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

营养流行病学旨在将饮食暴露与慢性疾病联系起来,但评估饮食摄入的工具是不准确的。识别不可靠数据和错误来源的一种方法是将估计摄入量与总能量消耗(TEE)进行比较。在这项研究中,我们使用国际原子能机构双标签水数据库,利用4至96岁人群的6497个TEE测量值,推导出TEE的预测方程。由此产生的回归方程可以从容易获得的变量(如体重、年龄和性别)预测预期TEE,预测限为95%,可用于筛选饮食研究参与者的误报。我们将该方程应用于两个大型数据集(国家饮食和营养调查和国家健康和营养检查调查),发现误报的水平为50%。随着误报水平的增加,这些研究中饮食报告中的常量营养素组成存在系统性偏差,导致饮食成分与体重指数之间存在潜在的虚假关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive equation derived from 6,497 doubly labelled water measurements enables the detection of erroneous self-reported energy intake
Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years. The resultant regression equation predicts expected TEE from easily acquired variables, such as body weight, age and sex, with 95% predictive limits that can be used to screen for misreporting by participants in dietary studies. We applied the equation to two large datasets (National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) and found that the level of misreporting was >50%. The macronutrient composition from dietary reports in these studies was systematically biased as the level of misreporting increased, leading to potentially spurious associations between diet components and body mass index. This study presents a predictive equation for total energy expenditure derived from doubly labelled water measurements. Applying this equation to two large datasets (the National Diet and Nutrition Survey and National Health and Nutrition Examination Survey) shows that the misreporting of total energy intake is greater than 50%, with important implications for macronutrient availability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
28.50
自引率
0.00%
发文量
0
期刊最新文献
Five years of Nature Food Bundled measures for China’s food system transformation reveal social and environmental co-benefits China’s sustainable food system requires concerted efforts Governance and resilience as entry points for transforming food systems in the countdown to 2030 Predictive equation helps estimate misreporting of energy intakes in dietary surveys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1