多孔有机分子共结晶构建的气体分离膜中规则排列的非均质孔隙

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-12 DOI:10.1002/anie.202420086
Saisai Yu, Siyuan Yang, Miao Yang, Ju Yang, Ziye Song, Dingyue Hu, Heng Ji, Zhe Jia, Ming Liu
{"title":"多孔有机分子共结晶构建的气体分离膜中规则排列的非均质孔隙","authors":"Saisai Yu, Siyuan Yang, Miao Yang, Ju Yang, Ziye Song, Dingyue Hu, Heng Ji, Zhe Jia, Ming Liu","doi":"10.1002/anie.202420086","DOIUrl":null,"url":null,"abstract":"Integrating two or more materials to construct membranes with heterogeneous pore structures is an effective strategy for enhancing separation performance. Regularly arranging these heterogeneous pores can significantly optimize the combined effect of the introduced components. Porous Organic Cages (POCs), an emerging subclass of porous materials composed of discrete molecules, assemble to form interconnected pores and exhibit permanent porosity in the solid state. A unique feature of POCs is their modularity, enabling a \"mix and match\" approach to create co-crystal structures driven by the intermolecular interactions. Herein, we adopted the cocrystallization strategy for fabricating gas separation membranes. We prepared membranes from a series of [4+6] imine cage pairs, which vary in cavity sizes and include cages with fluorescence properties. By optimizing the cocrystalization conditions, we successfully fabricated continuous, defect-free gas membranes, benefiting from chiral recognition interactions. By introducing regularly alternating small and large pores, we addressed challenges such as the trade-off between permeability and selectivity in gas separation membrane. Moreover, the cocrystallization strategy has been proven effective for other molecular systems besides POCs, such as macrocycles, for the preparation of co-crystal membranes. This method broadens the scope for fabricating high-performance gas separation membranes with ordered heterogeneous pores.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"29 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularly Arranged Heterogeneous Pores in Gas Separation Membranes Constructed by Cocrystallization of Porous Organic Molecules\",\"authors\":\"Saisai Yu, Siyuan Yang, Miao Yang, Ju Yang, Ziye Song, Dingyue Hu, Heng Ji, Zhe Jia, Ming Liu\",\"doi\":\"10.1002/anie.202420086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating two or more materials to construct membranes with heterogeneous pore structures is an effective strategy for enhancing separation performance. Regularly arranging these heterogeneous pores can significantly optimize the combined effect of the introduced components. Porous Organic Cages (POCs), an emerging subclass of porous materials composed of discrete molecules, assemble to form interconnected pores and exhibit permanent porosity in the solid state. A unique feature of POCs is their modularity, enabling a \\\"mix and match\\\" approach to create co-crystal structures driven by the intermolecular interactions. Herein, we adopted the cocrystallization strategy for fabricating gas separation membranes. We prepared membranes from a series of [4+6] imine cage pairs, which vary in cavity sizes and include cages with fluorescence properties. By optimizing the cocrystalization conditions, we successfully fabricated continuous, defect-free gas membranes, benefiting from chiral recognition interactions. By introducing regularly alternating small and large pores, we addressed challenges such as the trade-off between permeability and selectivity in gas separation membrane. Moreover, the cocrystallization strategy has been proven effective for other molecular systems besides POCs, such as macrocycles, for the preparation of co-crystal membranes. This method broadens the scope for fabricating high-performance gas separation membranes with ordered heterogeneous pores.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202420086\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202420086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将两种或两种以上的材料整合成具有非均质孔结构的膜是提高分离性能的有效策略。有规律地排列这些非均质孔隙可以显著优化引入组分的组合效果。多孔有机笼(POCs)是一种新兴的多孔材料亚类,由离散分子组成,组装形成相互连接的孔,并在固体状态下表现出永久的多孔性。poc的一个独特之处是它们的模块化,使“混合和匹配”的方法能够创建由分子间相互作用驱动的共晶结构。本文采用共结晶策略制备气体分离膜。我们用一系列[4+6]亚胺笼对制备了膜,这些亚胺笼对的腔大小不同,包括具有荧光特性的笼。通过优化共结晶条件,我们成功地制造了连续的、无缺陷的气体膜,受益于手性识别相互作用。通过引入小孔和大孔的定期交替,我们解决了气体分离膜的渗透性和选择性之间的权衡等挑战。此外,共晶策略已被证明对除POCs外的其他分子体系(如大环)制备共晶膜是有效的。该方法拓宽了制备具有有序非均相孔的高性能气体分离膜的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Regularly Arranged Heterogeneous Pores in Gas Separation Membranes Constructed by Cocrystallization of Porous Organic Molecules
Integrating two or more materials to construct membranes with heterogeneous pore structures is an effective strategy for enhancing separation performance. Regularly arranging these heterogeneous pores can significantly optimize the combined effect of the introduced components. Porous Organic Cages (POCs), an emerging subclass of porous materials composed of discrete molecules, assemble to form interconnected pores and exhibit permanent porosity in the solid state. A unique feature of POCs is their modularity, enabling a "mix and match" approach to create co-crystal structures driven by the intermolecular interactions. Herein, we adopted the cocrystallization strategy for fabricating gas separation membranes. We prepared membranes from a series of [4+6] imine cage pairs, which vary in cavity sizes and include cages with fluorescence properties. By optimizing the cocrystalization conditions, we successfully fabricated continuous, defect-free gas membranes, benefiting from chiral recognition interactions. By introducing regularly alternating small and large pores, we addressed challenges such as the trade-off between permeability and selectivity in gas separation membrane. Moreover, the cocrystallization strategy has been proven effective for other molecular systems besides POCs, such as macrocycles, for the preparation of co-crystal membranes. This method broadens the scope for fabricating high-performance gas separation membranes with ordered heterogeneous pores.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Single-Crystal-to-Single-Crystal Synthesis of a Polymer in Two Distinct Topologies Topological Supramolecular Complexation of Metal-Organic Polyhedra for Tunable Interconnected Hierarchical Microporosity in Amorphous Form Sabatier Principle Inspired Bifunctional Alloy Interface for Stable and High-Depth Discharging Zinc Metal Anodes Towards Solid-State Batteries Using a Calcium Hydridoborate Electrolyte Exceptional Battery-level Safety of High Energy Density Lithium-Ion Batteries through Non-Flammable and Low-Exothermic Localize High Concentration Electrolytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1