53种多路靶向蛋白质组学检测在肿瘤细胞系验证研究中的特性

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2025-01-13 DOI:10.1021/acs.jproteome.4c00576
Constance A Sobsey, Gerald Batist, Christoph H Borchers
{"title":"53种多路靶向蛋白质组学检测在肿瘤细胞系验证研究中的特性","authors":"Constance A Sobsey, Gerald Batist, Christoph H Borchers","doi":"10.1021/acs.jproteome.4c00576","DOIUrl":null,"url":null,"abstract":"<p><p>The National Cancer Institute's Clinical Proteomics Tumor Analysis Consortium (CPTAC) was established to address the need for improved design, standardization, and validation of proteomics assays to enable better translation of biomarkers from the analytical lab to the clinic. Here, we applied CPTAC guidelines to characterize quantitative mass spectrometry (MS) assays in a new multiple reaction monitoring (MRM) proteomics panel. The panel of 50 proteins was developed in response to a previous study that identified a proteomic profile of altered translational control associated with response to a new cancer drug. MRM-MS assays for 53 peptides of interest were developed, optimized, and characterized on a UPLC system coupled to a triple-quadrupole mass spectrometer (QQQ-MS) using synthetic proteotypic peptides and corresponding stable-isotope labeled internal standard (SIS) peptides. Most of the assays were found to be fit-for-purpose for biomarker verification in that they precisely and reproducibly quantify the peptides at levels corresponding to the endogenous concentration in the desired cancer cell lines. Of these, 28 peptide assays represent to proteins that previously had no associated assays published in the CPTAC database. The targeted proteins in this publicly deposited validated multiplexed panel may be of use for research applications in cancer, cellular stress, neurology, cardiology, and metabolism.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of 53 Multiplexed Targeted Proteomics Assays for Verification Studies in Cancer Cell Lines.\",\"authors\":\"Constance A Sobsey, Gerald Batist, Christoph H Borchers\",\"doi\":\"10.1021/acs.jproteome.4c00576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The National Cancer Institute's Clinical Proteomics Tumor Analysis Consortium (CPTAC) was established to address the need for improved design, standardization, and validation of proteomics assays to enable better translation of biomarkers from the analytical lab to the clinic. Here, we applied CPTAC guidelines to characterize quantitative mass spectrometry (MS) assays in a new multiple reaction monitoring (MRM) proteomics panel. The panel of 50 proteins was developed in response to a previous study that identified a proteomic profile of altered translational control associated with response to a new cancer drug. MRM-MS assays for 53 peptides of interest were developed, optimized, and characterized on a UPLC system coupled to a triple-quadrupole mass spectrometer (QQQ-MS) using synthetic proteotypic peptides and corresponding stable-isotope labeled internal standard (SIS) peptides. Most of the assays were found to be fit-for-purpose for biomarker verification in that they precisely and reproducibly quantify the peptides at levels corresponding to the endogenous concentration in the desired cancer cell lines. Of these, 28 peptide assays represent to proteins that previously had no associated assays published in the CPTAC database. The targeted proteins in this publicly deposited validated multiplexed panel may be of use for research applications in cancer, cellular stress, neurology, cardiology, and metabolism.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00576\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00576","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

美国国家癌症研究所临床蛋白质组学肿瘤分析联盟(CPTAC)的成立是为了满足改进蛋白质组学分析的设计、标准化和验证的需求,以便更好地将生物标志物从分析实验室转化为临床。在这里,我们应用CPTAC指南在一个新的多反应监测(MRM)蛋白质组学面板中表征定量质谱(MS)分析。之前的一项研究确定了与对一种新的抗癌药物的反应相关的翻译控制改变的蛋白质组学特征,因此开发了50个蛋白质组。利用合成的蛋白型肽和相应的稳定同位素标记的内标(SIS)肽,在UPLC系统与三重四极杆质谱联用(QQQ-MS)上建立、优化和表征了53个目标肽的MRM-MS分析方法。大多数检测方法被发现适合生物标志物验证的目的,因为它们精确地、可重复地定量肽,其水平与所需癌细胞系的内源性浓度相对应。其中,28个肽分析代表了以前在CPTAC数据库中没有发表过相关分析的蛋白质。这种公开沉积的经过验证的多路复用面板中的靶蛋白可能用于癌症,细胞应激,神经学,心脏病学和代谢的研究应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of 53 Multiplexed Targeted Proteomics Assays for Verification Studies in Cancer Cell Lines.

The National Cancer Institute's Clinical Proteomics Tumor Analysis Consortium (CPTAC) was established to address the need for improved design, standardization, and validation of proteomics assays to enable better translation of biomarkers from the analytical lab to the clinic. Here, we applied CPTAC guidelines to characterize quantitative mass spectrometry (MS) assays in a new multiple reaction monitoring (MRM) proteomics panel. The panel of 50 proteins was developed in response to a previous study that identified a proteomic profile of altered translational control associated with response to a new cancer drug. MRM-MS assays for 53 peptides of interest were developed, optimized, and characterized on a UPLC system coupled to a triple-quadrupole mass spectrometer (QQQ-MS) using synthetic proteotypic peptides and corresponding stable-isotope labeled internal standard (SIS) peptides. Most of the assays were found to be fit-for-purpose for biomarker verification in that they precisely and reproducibly quantify the peptides at levels corresponding to the endogenous concentration in the desired cancer cell lines. Of these, 28 peptide assays represent to proteins that previously had no associated assays published in the CPTAC database. The targeted proteins in this publicly deposited validated multiplexed panel may be of use for research applications in cancer, cellular stress, neurology, cardiology, and metabolism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
MARLOWE: An Untargeted Proteomics, Statistical Approach to Taxonomic Classification for Forensics. Cysteine-Directed Isobaric Labeling Combined with GeLC-FAIMS-MS for Quantitative Top-Down Proteomics. OpenMS WebApps: Building User-Friendly Solutions for MS Analysis. Proteomic Analysis of Unicellular Cyanobacterium Crocosphaera subtropica ATCC 51142 under Extended Light or Dark Growth. Investigation of Immunoreactivity Profiles and Epitope Landscape in Divergent COVID-19 Trajectories and SARS-CoV-2 Variants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1