用凝胶非依赖性免疫蛋白组学方法鉴定小鼠肠道IgAs识别的白色念珠菌抗原。

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2025-01-13 DOI:10.1021/acs.jproteome.4c00691
Marina Álvaro-Moya, Alba Blesa, Daniel Prieto, Elvira Román, Jesús Pla, Rebeca Alonso-Monge
{"title":"用凝胶非依赖性免疫蛋白组学方法鉴定小鼠肠道IgAs识别的白色念珠菌抗原。","authors":"Marina Álvaro-Moya, Alba Blesa, Daniel Prieto, Elvira Román, Jesús Pla, Rebeca Alonso-Monge","doi":"10.1021/acs.jproteome.4c00691","DOIUrl":null,"url":null,"abstract":"<p><p>As part of the intestinal microbiota, <i>Candida albicans</i> can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown. Here, we used a gel-free immunoproteomic methodology to identify <i>C. albicans</i> gut immunogens. For this goal, we previously obtained specific secreted IgA from mice colonized with <i>C. albicans</i>. Then, secretome and surfome from <i>C. albicans</i> wild-type filaments were obtained and incubated with magnetic beads linked to antimouse IgA antibodies. sIgA targets were immunoprecipitated and analyzed by mass spectrometry. A third sample bearing the <i>C. albicans</i> antigen-sIgA complex was also examined. Those identified proteins that exhibited a higher percentile of relative abundance were considered for further analysis. From those, 35 proteins coincided among the three samples. Remarkably, about 40% of the identified proteins appeared in the databases as uncharacterized. The results were then validated by immunofluorescence assays overexpressing some of the genes identified in a yeast-lock <i>C. albicans</i> mutant. Adhesins such as Als3, Als1, and Hwp1 were corroborated to be IgA targets, as well as the chaperone Ssa2. Therefore, this gel-free immunoproteomic approach has been useful to identify new <i>C. albicans</i> antigens that generate a specific humoral response in the murine gut.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of <i>Candida albicans</i> Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.\",\"authors\":\"Marina Álvaro-Moya, Alba Blesa, Daniel Prieto, Elvira Román, Jesús Pla, Rebeca Alonso-Monge\",\"doi\":\"10.1021/acs.jproteome.4c00691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As part of the intestinal microbiota, <i>Candida albicans</i> can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown. Here, we used a gel-free immunoproteomic methodology to identify <i>C. albicans</i> gut immunogens. For this goal, we previously obtained specific secreted IgA from mice colonized with <i>C. albicans</i>. Then, secretome and surfome from <i>C. albicans</i> wild-type filaments were obtained and incubated with magnetic beads linked to antimouse IgA antibodies. sIgA targets were immunoprecipitated and analyzed by mass spectrometry. A third sample bearing the <i>C. albicans</i> antigen-sIgA complex was also examined. Those identified proteins that exhibited a higher percentile of relative abundance were considered for further analysis. From those, 35 proteins coincided among the three samples. Remarkably, about 40% of the identified proteins appeared in the databases as uncharacterized. The results were then validated by immunofluorescence assays overexpressing some of the genes identified in a yeast-lock <i>C. albicans</i> mutant. Adhesins such as Als3, Als1, and Hwp1 were corroborated to be IgA targets, as well as the chaperone Ssa2. Therefore, this gel-free immunoproteomic approach has been useful to identify new <i>C. albicans</i> antigens that generate a specific humoral response in the murine gut.</p>\",\"PeriodicalId\":48,\"journal\":{\"name\":\"Journal of Proteome Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Proteome Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00691\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00691","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

作为肠道菌群的一部分,白色念珠菌可以在胃肠道(GIT)中引起主要针对菌丝抗原的体液反应。这种反应与控制真菌的侵入形式和维持酵母作为无害的共生体有关。然而,这种反应的具体目标仍然未知。在这里,我们使用无凝胶免疫蛋白质组学方法来鉴定白色念珠菌肠道免疫原。为此,我们先前从白色念珠菌定植的小鼠中获得了特异性分泌的IgA。然后,从白色念珠菌野生型细丝中获得分泌组和表面,并与抗小鼠IgA抗体连接的磁珠孵育。免疫沉淀sIgA靶点,质谱分析。第三个样本携带白色念珠菌抗原siga复合体也进行了检查。那些鉴定出的蛋白质表现出较高的百分位数相对丰度,被认为是进一步分析。从这些样本中,有35种蛋白质在三个样本中一致。值得注意的是,大约40%的鉴定蛋白在数据库中未被鉴定。然后通过免疫荧光法验证了过表达酵母锁定白色念珠菌突变体中鉴定的一些基因的结果。粘附素如Als3, Als1和Hwp1被证实是IgA靶标,以及伴侣蛋白Ssa2。因此,这种无凝胶免疫蛋白质组学方法对于鉴定在小鼠肠道中产生特异性体液反应的新的白色念珠菌抗原是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of Candida albicans Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.

As part of the intestinal microbiota, Candida albicans can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown. Here, we used a gel-free immunoproteomic methodology to identify C. albicans gut immunogens. For this goal, we previously obtained specific secreted IgA from mice colonized with C. albicans. Then, secretome and surfome from C. albicans wild-type filaments were obtained and incubated with magnetic beads linked to antimouse IgA antibodies. sIgA targets were immunoprecipitated and analyzed by mass spectrometry. A third sample bearing the C. albicans antigen-sIgA complex was also examined. Those identified proteins that exhibited a higher percentile of relative abundance were considered for further analysis. From those, 35 proteins coincided among the three samples. Remarkably, about 40% of the identified proteins appeared in the databases as uncharacterized. The results were then validated by immunofluorescence assays overexpressing some of the genes identified in a yeast-lock C. albicans mutant. Adhesins such as Als3, Als1, and Hwp1 were corroborated to be IgA targets, as well as the chaperone Ssa2. Therefore, this gel-free immunoproteomic approach has been useful to identify new C. albicans antigens that generate a specific humoral response in the murine gut.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
MARLOWE: An Untargeted Proteomics, Statistical Approach to Taxonomic Classification for Forensics. Cysteine-Directed Isobaric Labeling Combined with GeLC-FAIMS-MS for Quantitative Top-Down Proteomics. OpenMS WebApps: Building User-Friendly Solutions for MS Analysis. Proteomic Analysis of Unicellular Cyanobacterium Crocosphaera subtropica ATCC 51142 under Extended Light or Dark Growth. Investigation of Immunoreactivity Profiles and Epitope Landscape in Divergent COVID-19 Trajectories and SARS-CoV-2 Variants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1