Yumeng Liao, Danni Chai, Quan Wang, Xueqi Wang, Qian Yong, Zhaoming Cheng, Chuanjun Zhang, Di Zhang, Boshi Liu, Rui Liu, Zheng Li
{"title":"用于制药和医学科学的传感器组合器官芯片:从设计和材料到典型生物医学应用。","authors":"Yumeng Liao, Danni Chai, Quan Wang, Xueqi Wang, Qian Yong, Zhaoming Cheng, Chuanjun Zhang, Di Zhang, Boshi Liu, Rui Liu, Zheng Li","doi":"10.1039/d4mh01174k","DOIUrl":null,"url":null,"abstract":"<p><p>Organ-on-a-chip (OoC) is a breakthrough technology in biomedicine. As microphysiological systems constructed <i>in vitro</i>, OoCs can simulate the main structures and functions of human organs, thereby providing a powerful tool for drug screening and disease model construction. Furthermore, the coupling of OoCs and sensors has been an innovative discovery in the field of biomedical and electronic engineering in recent years. The integration of sensors into OoCs allows the real-time monitoring of the changes in the microenvironmental parameters within the chip, reflecting the physiological responses of cells or tissues in the OoC and providing more accurate data support for drug development and disease treatment. In this work, we briefly outline the design ideas of OoCs, summarize the commonly used materials for OoCs and their advantages and disadvantages, and provide the most recent practical examples of the combination of OoCs and sensors in pharmaceutical and medical sciences. Furthermore, perspectives, challenges and their solutions in the future development of this technology are provided, with the aim to inspire the researchers to work toward the subsequent development of OoCs having improved reliability.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensor-combined organ-on-a-chip for pharmaceutical and medical sciences: from design and materials to typical biomedical applications.\",\"authors\":\"Yumeng Liao, Danni Chai, Quan Wang, Xueqi Wang, Qian Yong, Zhaoming Cheng, Chuanjun Zhang, Di Zhang, Boshi Liu, Rui Liu, Zheng Li\",\"doi\":\"10.1039/d4mh01174k\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Organ-on-a-chip (OoC) is a breakthrough technology in biomedicine. As microphysiological systems constructed <i>in vitro</i>, OoCs can simulate the main structures and functions of human organs, thereby providing a powerful tool for drug screening and disease model construction. Furthermore, the coupling of OoCs and sensors has been an innovative discovery in the field of biomedical and electronic engineering in recent years. The integration of sensors into OoCs allows the real-time monitoring of the changes in the microenvironmental parameters within the chip, reflecting the physiological responses of cells or tissues in the OoC and providing more accurate data support for drug development and disease treatment. In this work, we briefly outline the design ideas of OoCs, summarize the commonly used materials for OoCs and their advantages and disadvantages, and provide the most recent practical examples of the combination of OoCs and sensors in pharmaceutical and medical sciences. Furthermore, perspectives, challenges and their solutions in the future development of this technology are provided, with the aim to inspire the researchers to work toward the subsequent development of OoCs having improved reliability.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01174k\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01174k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Sensor-combined organ-on-a-chip for pharmaceutical and medical sciences: from design and materials to typical biomedical applications.
Organ-on-a-chip (OoC) is a breakthrough technology in biomedicine. As microphysiological systems constructed in vitro, OoCs can simulate the main structures and functions of human organs, thereby providing a powerful tool for drug screening and disease model construction. Furthermore, the coupling of OoCs and sensors has been an innovative discovery in the field of biomedical and electronic engineering in recent years. The integration of sensors into OoCs allows the real-time monitoring of the changes in the microenvironmental parameters within the chip, reflecting the physiological responses of cells or tissues in the OoC and providing more accurate data support for drug development and disease treatment. In this work, we briefly outline the design ideas of OoCs, summarize the commonly used materials for OoCs and their advantages and disadvantages, and provide the most recent practical examples of the combination of OoCs and sensors in pharmaceutical and medical sciences. Furthermore, perspectives, challenges and their solutions in the future development of this technology are provided, with the aim to inspire the researchers to work toward the subsequent development of OoCs having improved reliability.