{"title":"快速无受体普鲁士蓝电化学传感器检测血液中致病菌。","authors":"Sriramprabha Ramasamy, Sekar Madhu, Jungil Choi","doi":"10.1016/j.bioelechem.2025.108902","DOIUrl":null,"url":null,"abstract":"<div><div>Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO<sub>2</sub>-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture. PB thin films were electrodeposited onto a screen-printed carbon electrode (SPCE) via cyclic voltammetry (CV) technique under optimal conditions. The electrochemical performance of PB/SPCE was assessed using differential pulse voltammetry (DPV) against exoelectrogenic bacteria, including <em>E. coli</em>, <em>P. aeruginosa</em>, <em>S. aureus,</em> and <em>E. faecalis</em>. The proposed sensor exhibited surface-controlled electrochemical kinetics and bacteria-driven metal reduction from PB to Prussian white (PW), facilitated by extracellular electron transfer (EET). It showed significant sensitivity with an extensive detection range of 10<sup>2</sup>–10<sup>8</sup> CFU/mL for <em>E. coli</em> and <em>S. aureus</em>, and 10<sup>3</sup>–10<sup>8</sup> CFU/mL for <em>P. aeruginosa</em> and <em>E. faecalis</em>, with reliable detection limits. The sensor accessed the viability of the pathogen within 3 hrs, offering a rapid, efficient alternative to traditional, labor-intensive methods for blood-based diagnostics.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"163 ","pages":"Article 108902"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid and receptor-free Prussian blue electrochemical sensor for the detection of pathogenic bacteria in blood\",\"authors\":\"Sriramprabha Ramasamy, Sekar Madhu, Jungil Choi\",\"doi\":\"10.1016/j.bioelechem.2025.108902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO<sub>2</sub>-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture. PB thin films were electrodeposited onto a screen-printed carbon electrode (SPCE) via cyclic voltammetry (CV) technique under optimal conditions. The electrochemical performance of PB/SPCE was assessed using differential pulse voltammetry (DPV) against exoelectrogenic bacteria, including <em>E. coli</em>, <em>P. aeruginosa</em>, <em>S. aureus,</em> and <em>E. faecalis</em>. The proposed sensor exhibited surface-controlled electrochemical kinetics and bacteria-driven metal reduction from PB to Prussian white (PW), facilitated by extracellular electron transfer (EET). It showed significant sensitivity with an extensive detection range of 10<sup>2</sup>–10<sup>8</sup> CFU/mL for <em>E. coli</em> and <em>S. aureus</em>, and 10<sup>3</sup>–10<sup>8</sup> CFU/mL for <em>P. aeruginosa</em> and <em>E. faecalis</em>, with reliable detection limits. The sensor accessed the viability of the pathogen within 3 hrs, offering a rapid, efficient alternative to traditional, labor-intensive methods for blood-based diagnostics.</div></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"163 \",\"pages\":\"Article 108902\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539425000052\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425000052","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Rapid and receptor-free Prussian blue electrochemical sensor for the detection of pathogenic bacteria in blood
Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO2-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture. PB thin films were electrodeposited onto a screen-printed carbon electrode (SPCE) via cyclic voltammetry (CV) technique under optimal conditions. The electrochemical performance of PB/SPCE was assessed using differential pulse voltammetry (DPV) against exoelectrogenic bacteria, including E. coli, P. aeruginosa, S. aureus, and E. faecalis. The proposed sensor exhibited surface-controlled electrochemical kinetics and bacteria-driven metal reduction from PB to Prussian white (PW), facilitated by extracellular electron transfer (EET). It showed significant sensitivity with an extensive detection range of 102–108 CFU/mL for E. coli and S. aureus, and 103–108 CFU/mL for P. aeruginosa and E. faecalis, with reliable detection limits. The sensor accessed the viability of the pathogen within 3 hrs, offering a rapid, efficient alternative to traditional, labor-intensive methods for blood-based diagnostics.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.