甲基乙二醛通过抑制成骨细胞末梢分化损害骨痂矿化和骨折愈合。

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemical and biophysical research communications Pub Date : 2025-02-02 DOI:10.1016/j.bbrc.2025.151312
Tetsuya Seto , Kiminori Yukata , Shunya Tsuji , Yusuke Takeshima , Takeshi Honda , Akihiko Sakamoto , Kenji Takemoto , Hiroki Sakai , Mayu Matsuo , Yurika Sasaki , Mizuki Kaneda , Mikako Yoshimura , Atsushi Mihara , Kazuya Uehara , Aira Matsugaki , Takayoshi Nakano , Koji Harada , Yoshiro Tahara , Keiko Iwaisako , Ryoji Yanai , Masataka Asagiri
{"title":"甲基乙二醛通过抑制成骨细胞末梢分化损害骨痂矿化和骨折愈合。","authors":"Tetsuya Seto ,&nbsp;Kiminori Yukata ,&nbsp;Shunya Tsuji ,&nbsp;Yusuke Takeshima ,&nbsp;Takeshi Honda ,&nbsp;Akihiko Sakamoto ,&nbsp;Kenji Takemoto ,&nbsp;Hiroki Sakai ,&nbsp;Mayu Matsuo ,&nbsp;Yurika Sasaki ,&nbsp;Mizuki Kaneda ,&nbsp;Mikako Yoshimura ,&nbsp;Atsushi Mihara ,&nbsp;Kazuya Uehara ,&nbsp;Aira Matsugaki ,&nbsp;Takayoshi Nakano ,&nbsp;Koji Harada ,&nbsp;Yoshiro Tahara ,&nbsp;Keiko Iwaisako ,&nbsp;Ryoji Yanai ,&nbsp;Masataka Asagiri","doi":"10.1016/j.bbrc.2025.151312","DOIUrl":null,"url":null,"abstract":"<div><div>Impaired fracture healing in diabetic patients leads to prolonged morbidity and increased healthcare costs. Methylglyoxal (MG), a reactive metabolite elevated in diabetes, is implicated in various complications, but its direct impact on bone healing remains unclear. Here, using a non-diabetic murine tibial fracture model, we demonstrate that MG directly impairs fracture healing. Micro-computed tomography revealed decreased volumetric bone mineral density in the callus, while callus volume remained unchanged, resulting in a brittle bone structure. This was accompanied by reduced expression of osteocalcin and bone sialoprotein, both critical for mineralization. Biomechanical analysis indicated that MG reduced the mechanical resilience of the fracture site without altering its elastic strength, suggesting that the impairment was not primarily due to the accumulation of advanced glycation end-products in the bone extracellular matrix. <em>In vitro</em> studies confirmed that non-cytotoxic concentrations of MG inhibited osteoblast maturation and mineralization. Transcriptomic analysis identified downregulation of Osterix, a key transcription factor for osteoblast maturation, without altering Runx2 levels, leading to decreased expression of key mineralization-related factors like osteocalcin. These findings align with clinical observations of reduced circulating osteocalcin levels in diabetic patients, suggesting that the detrimental effects of MG on osteoblasts may extend beyond bone metabolism. Our study highlights MG and MG-sensitive pathways as potential therapeutic targets for improving bone repair in individuals with diabetes and other conditions characterized by elevated MG levels.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"747 ","pages":"Article 151312"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Methylglyoxal compromises callus mineralization and impairs fracture healing through suppression of osteoblast terminal differentiation\",\"authors\":\"Tetsuya Seto ,&nbsp;Kiminori Yukata ,&nbsp;Shunya Tsuji ,&nbsp;Yusuke Takeshima ,&nbsp;Takeshi Honda ,&nbsp;Akihiko Sakamoto ,&nbsp;Kenji Takemoto ,&nbsp;Hiroki Sakai ,&nbsp;Mayu Matsuo ,&nbsp;Yurika Sasaki ,&nbsp;Mizuki Kaneda ,&nbsp;Mikako Yoshimura ,&nbsp;Atsushi Mihara ,&nbsp;Kazuya Uehara ,&nbsp;Aira Matsugaki ,&nbsp;Takayoshi Nakano ,&nbsp;Koji Harada ,&nbsp;Yoshiro Tahara ,&nbsp;Keiko Iwaisako ,&nbsp;Ryoji Yanai ,&nbsp;Masataka Asagiri\",\"doi\":\"10.1016/j.bbrc.2025.151312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Impaired fracture healing in diabetic patients leads to prolonged morbidity and increased healthcare costs. Methylglyoxal (MG), a reactive metabolite elevated in diabetes, is implicated in various complications, but its direct impact on bone healing remains unclear. Here, using a non-diabetic murine tibial fracture model, we demonstrate that MG directly impairs fracture healing. Micro-computed tomography revealed decreased volumetric bone mineral density in the callus, while callus volume remained unchanged, resulting in a brittle bone structure. This was accompanied by reduced expression of osteocalcin and bone sialoprotein, both critical for mineralization. Biomechanical analysis indicated that MG reduced the mechanical resilience of the fracture site without altering its elastic strength, suggesting that the impairment was not primarily due to the accumulation of advanced glycation end-products in the bone extracellular matrix. <em>In vitro</em> studies confirmed that non-cytotoxic concentrations of MG inhibited osteoblast maturation and mineralization. Transcriptomic analysis identified downregulation of Osterix, a key transcription factor for osteoblast maturation, without altering Runx2 levels, leading to decreased expression of key mineralization-related factors like osteocalcin. These findings align with clinical observations of reduced circulating osteocalcin levels in diabetic patients, suggesting that the detrimental effects of MG on osteoblasts may extend beyond bone metabolism. Our study highlights MG and MG-sensitive pathways as potential therapeutic targets for improving bone repair in individuals with diabetes and other conditions characterized by elevated MG levels.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"747 \",\"pages\":\"Article 151312\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X25000269\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X25000269","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病患者骨折愈合受损导致发病率延长和医疗费用增加。甲基乙二醛(MG)是一种在糖尿病中升高的反应性代谢物,与各种并发症有关,但其对骨愈合的直接影响尚不清楚。在这里,我们使用非糖尿病小鼠胫骨骨折模型,证明MG直接损害骨折愈合。显微计算机断层扫描显示骨痂的骨矿物质密度下降,而骨痂体积保持不变,导致骨结构脆性。这伴随着骨钙素和骨涎蛋白的表达减少,两者对矿化至关重要。生物力学分析表明,MG降低了骨折部位的机械弹性,但没有改变其弹性强度,这表明损伤主要不是由于骨细胞外基质中晚期糖基化终产物的积累。体外研究证实,无细胞毒性浓度的MG抑制成骨细胞成熟和矿化。转录组学分析发现,在不改变Runx2水平的情况下,成骨细胞成熟的关键转录因子Osterix下调,导致骨钙素等关键矿化相关因子的表达降低。这些发现与糖尿病患者循环骨钙素水平降低的临床观察相一致,表明MG对成骨细胞的有害影响可能超出骨代谢。我们的研究强调MG和MG敏感通路是改善糖尿病和其他以MG水平升高为特征的疾病患者骨修复的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Methylglyoxal compromises callus mineralization and impairs fracture healing through suppression of osteoblast terminal differentiation
Impaired fracture healing in diabetic patients leads to prolonged morbidity and increased healthcare costs. Methylglyoxal (MG), a reactive metabolite elevated in diabetes, is implicated in various complications, but its direct impact on bone healing remains unclear. Here, using a non-diabetic murine tibial fracture model, we demonstrate that MG directly impairs fracture healing. Micro-computed tomography revealed decreased volumetric bone mineral density in the callus, while callus volume remained unchanged, resulting in a brittle bone structure. This was accompanied by reduced expression of osteocalcin and bone sialoprotein, both critical for mineralization. Biomechanical analysis indicated that MG reduced the mechanical resilience of the fracture site without altering its elastic strength, suggesting that the impairment was not primarily due to the accumulation of advanced glycation end-products in the bone extracellular matrix. In vitro studies confirmed that non-cytotoxic concentrations of MG inhibited osteoblast maturation and mineralization. Transcriptomic analysis identified downregulation of Osterix, a key transcription factor for osteoblast maturation, without altering Runx2 levels, leading to decreased expression of key mineralization-related factors like osteocalcin. These findings align with clinical observations of reduced circulating osteocalcin levels in diabetic patients, suggesting that the detrimental effects of MG on osteoblasts may extend beyond bone metabolism. Our study highlights MG and MG-sensitive pathways as potential therapeutic targets for improving bone repair in individuals with diabetes and other conditions characterized by elevated MG levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical and biophysical research communications
Biochemical and biophysical research communications 生物-生化与分子生物学
CiteScore
6.10
自引率
0.00%
发文量
1400
审稿时长
14 days
期刊介绍: Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology ; molecular biology; neurobiology; plant biology and proteomics
期刊最新文献
Editorial Board Curcumin mitigates heatstroke-induced myocardial injury by modulating the Akt/Bad/Caspase-3 pathway Raman spectroscopic modality to examine therapeutic efficacy of Galectin-3 inhibitor in prostate cancer The TT8 transcription factor alleviates nickel toxicity in Arabidopsis Study of the antimicrobial activity of carvacrol and its mechanism of action against drug-resistant bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1