He Duan, Meifang Zhang, Xin Wang, Fei Xiao, Wenli Li
{"title":"Generation of glucosylantimycins by heterologous expression of a promiscuous glycosyltransferase in a deepsea-derived <i>Streptomyces</i>.","authors":"He Duan, Meifang Zhang, Xin Wang, Fei Xiao, Wenli Li","doi":"10.1080/14786419.2024.2448728","DOIUrl":null,"url":null,"abstract":"<p><p>Antimycins are a class of depsipeptide compounds that exhibit diverse bioactivities. However, their potential clinical applications are hampered by high cell toxicities. Glycosylation usually has profound impacts on the physicochemical properties, bioactivities and toxicities of natural products. In this study, we overexpressed an artificial glycosyltransferase (GT) gene <i>sbmGT1</i> in deepsea-derived <i>Streptomyces albus</i> ZH66, leading to the discovery of three new antimycin derivatives glucosylantimycins A, B and C (<b>1</b>-<b>3</b>). Their structures were determined by a combination of spectroscopic methods, including high resolution electrospray ionisation mass spectrometry (HRESIMS) and nuclear magnetic resonance (NMR) analysis. The glycosylation remarkably improved the water solubility but simultaneously reduced the cytotoxicities of antimycins towards human cervix epidermoid carcinoma (HeLa) and human hepatic carcinoma (HepG2) cell lines.</p>","PeriodicalId":18990,"journal":{"name":"Natural Product Research","volume":" ","pages":"1-9"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Product Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/14786419.2024.2448728","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Generation of glucosylantimycins by heterologous expression of a promiscuous glycosyltransferase in a deepsea-derived Streptomyces.
Antimycins are a class of depsipeptide compounds that exhibit diverse bioactivities. However, their potential clinical applications are hampered by high cell toxicities. Glycosylation usually has profound impacts on the physicochemical properties, bioactivities and toxicities of natural products. In this study, we overexpressed an artificial glycosyltransferase (GT) gene sbmGT1 in deepsea-derived Streptomyces albus ZH66, leading to the discovery of three new antimycin derivatives glucosylantimycins A, B and C (1-3). Their structures were determined by a combination of spectroscopic methods, including high resolution electrospray ionisation mass spectrometry (HRESIMS) and nuclear magnetic resonance (NMR) analysis. The glycosylation remarkably improved the water solubility but simultaneously reduced the cytotoxicities of antimycins towards human cervix epidermoid carcinoma (HeLa) and human hepatic carcinoma (HepG2) cell lines.
期刊介绍:
The aim of Natural Product Research is to publish important contributions in the field of natural product chemistry. The journal covers all aspects of research in the chemistry and biochemistry of naturally occurring compounds.
The communications include coverage of work on natural substances of land and sea and of plants, microbes and animals. Discussions of structure elucidation, synthesis and experimental biosynthesis of natural products as well as developments of methods in these areas are welcomed in the journal. Finally, research papers in fields on the chemistry-biology boundary, eg. fermentation chemistry, plant tissue culture investigations etc., are accepted into the journal.
Natural Product Research issues will be subtitled either ""Part A - Synthesis and Structure"" or ""Part B - Bioactive Natural Products"". for details on this , see the forthcoming articles section.
All manuscript submissions are subject to initial appraisal by the Editor, and, if found suitable for further consideration, to peer review by independent, anonymous expert referees. All peer review is single blind and submission is online via ScholarOne Manuscripts.