硒-壳聚糖复合纳米颗粒改善水稻幼苗砷胁迫的应用。

IF 6.1 2区 生物学 Q1 PLANT SCIENCES Plant Physiology and Biochemistry Pub Date : 2025-01-04 DOI:10.1016/j.plaphy.2024.109470
Zesmin Khan, Devasish Chowdhury, Hrishikesh Upadhyaya
{"title":"硒-壳聚糖复合纳米颗粒改善水稻幼苗砷胁迫的应用。","authors":"Zesmin Khan, Devasish Chowdhury, Hrishikesh Upadhyaya","doi":"10.1016/j.plaphy.2024.109470","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles. In our study, Luit rice seedlings grown in an arsenic-treated Hoagland solution showed a reduction of growth, decreased superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, ascorbate, and glutathione content. Otherwise, superoxide anion, hydrogen peroxide, and malondialdehyde content increased in arsenic-stressed conditions. The alone application of Selenium nanoparticles, chitosan nanoparticles, and their nanoformulation improved growth, reduced stress parameters, and enhanced enzymatic and non-enzymatic activity. Additionally, the reduction of superoxide anion, hydrogen peroxide, and malondialdehyde content was higher by applying composite nanoformulations in arsenic-stressed conditions than selenium and chitosan nanoparticles. The treatment of composite nanoformulation also regulated the enzymatic and non-enzymatic antioxidant activity higher than that of other nanoparticles. It might be due to the higher stability and antioxidant activity of composite nanoformulations than that of selenium and chitosan nanoparticles. Our study suggests that the composite nanoformulation enhanced the growth of rice plants by mitigating arsenic-induced reactive oxygen species and upregulating antioxidant activity.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109470"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of the composite nanoparticles of selenium and chitosan for ameliorating arsenic stress in rice seedlings.\",\"authors\":\"Zesmin Khan, Devasish Chowdhury, Hrishikesh Upadhyaya\",\"doi\":\"10.1016/j.plaphy.2024.109470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles. In our study, Luit rice seedlings grown in an arsenic-treated Hoagland solution showed a reduction of growth, decreased superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, ascorbate, and glutathione content. Otherwise, superoxide anion, hydrogen peroxide, and malondialdehyde content increased in arsenic-stressed conditions. The alone application of Selenium nanoparticles, chitosan nanoparticles, and their nanoformulation improved growth, reduced stress parameters, and enhanced enzymatic and non-enzymatic activity. Additionally, the reduction of superoxide anion, hydrogen peroxide, and malondialdehyde content was higher by applying composite nanoformulations in arsenic-stressed conditions than selenium and chitosan nanoparticles. The treatment of composite nanoformulation also regulated the enzymatic and non-enzymatic antioxidant activity higher than that of other nanoparticles. It might be due to the higher stability and antioxidant activity of composite nanoformulations than that of selenium and chitosan nanoparticles. Our study suggests that the composite nanoformulation enhanced the growth of rice plants by mitigating arsenic-induced reactive oxygen species and upregulating antioxidant activity.</p>\",\"PeriodicalId\":20234,\"journal\":{\"name\":\"Plant Physiology and Biochemistry\",\"volume\":\"220 \",\"pages\":\"109470\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Physiology and Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.plaphy.2024.109470\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2024.109470","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

硒纳米颗粒以其抗氧化和减轻应力的特性而闻名。在我们的研究中,合成了硒和壳聚糖的复合纳米配方。合成的纳米复合物直径为50 nm,呈球形,具有比硒和壳聚糖纳米颗粒更高的抗氧化活性和稳定性。在我们的研究中,水稻幼苗生长在砷处理的Hoagland溶液中,表现出生长减少,超氧化物歧化酶、过氧化氢酶、抗坏血酸过氧化物酶、愈木酚过氧化物酶、抗坏血酸和谷胱甘肽含量降低。否则,在砷胁迫条件下,超氧阴离子、过氧化氢和丙二醛含量增加。硒纳米粒子、壳聚糖纳米粒子及其纳米配方的单独应用促进了生长,降低了应力参数,增强了酶和非酶活性。此外,在砷胁迫条件下,复合纳米配方对超氧阴离子、过氧化氢和丙二醛含量的还原高于硒和壳聚糖纳米颗粒。复合纳米制剂处理对酶和非酶抗氧化活性的调节也高于其他纳米颗粒。这可能是由于复合纳米制剂的稳定性和抗氧化活性高于硒和壳聚糖纳米颗粒。我们的研究表明,复合纳米配方通过减轻砷诱导的活性氧和上调抗氧化活性来促进水稻植株的生长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of the composite nanoparticles of selenium and chitosan for ameliorating arsenic stress in rice seedlings.

Selenium nanoparticles are well known for their antioxidant and stress-mitigating properties. In our study, composite nanoformulations of selenium and chitosan have been synthesized. The synthesized composite nanoformulations were 50 nm in diameter, spherical in shape, and had higher antioxidant activities and stability than the selenium and chitosan nanoparticles. In our study, Luit rice seedlings grown in an arsenic-treated Hoagland solution showed a reduction of growth, decreased superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, ascorbate, and glutathione content. Otherwise, superoxide anion, hydrogen peroxide, and malondialdehyde content increased in arsenic-stressed conditions. The alone application of Selenium nanoparticles, chitosan nanoparticles, and their nanoformulation improved growth, reduced stress parameters, and enhanced enzymatic and non-enzymatic activity. Additionally, the reduction of superoxide anion, hydrogen peroxide, and malondialdehyde content was higher by applying composite nanoformulations in arsenic-stressed conditions than selenium and chitosan nanoparticles. The treatment of composite nanoformulation also regulated the enzymatic and non-enzymatic antioxidant activity higher than that of other nanoparticles. It might be due to the higher stability and antioxidant activity of composite nanoformulations than that of selenium and chitosan nanoparticles. Our study suggests that the composite nanoformulation enhanced the growth of rice plants by mitigating arsenic-induced reactive oxygen species and upregulating antioxidant activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Physiology and Biochemistry
Plant Physiology and Biochemistry 生物-植物科学
CiteScore
11.10
自引率
3.10%
发文量
410
审稿时长
33 days
期刊介绍: Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement. Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB. Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.
期刊最新文献
Identification of the bHLH gene family and functional analysis of ChMYC2 in drought stress of Cerasus humilis. Gene expression and mucilage adaptations to salinity in germination of extreme halophyte Schrenkiella parvula seeds. Integrated GWAS, BSA-seq, and RNA-seq analyses to identify candidate genes associated with male fertility trait in peach. Comprehensive analysis of small RNA, transcriptome, and degradome sequencing: Mapping the miRNA-gene regulatory network for the development of sweet potato tuber roots. Polyethylene nanoplastics affected morphological, physiological, and molecular indices in tomato (Solanum lycopersicum L.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1