具有对抗性交叉视图重构和信息瓶颈的对比图表示学习。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-01-09 DOI:10.1016/j.neunet.2024.107094
Yuntao Shou, Haozhi Lan, Xiangyong Cao
{"title":"具有对抗性交叉视图重构和信息瓶颈的对比图表示学习。","authors":"Yuntao Shou, Haozhi Lan, Xiangyong Cao","doi":"10.1016/j.neunet.2024.107094","DOIUrl":null,"url":null,"abstract":"<p><p>Graph Neural Networks (GNNs) have received extensive research attention due to their powerful information aggregation capabilities. Despite the success of GNNs, most of them suffer from the popularity bias issue in a graph caused by a small number of popular categories. Additionally, real graph datasets always contain incorrect node labels, which hinders GNNs from learning effective node representations. Graph contrastive learning (GCL) has been shown to be effective in solving the above problems for node classification tasks. Most existing GCL methods are implemented by randomly removing edges and nodes to create multiple contrasting views, and then maximizing the mutual information (MI) between these contrasting views to improve the node feature representation. However, maximizing the mutual information between multiple contrasting views may lead the model to learn some redundant information irrelevant to the node classification task. To tackle this issue, we propose an effective Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck (CGRL) for node classification, which can adaptively learn to mask the nodes and edges in the graph to obtain the optimal graph structure representation. Furthermore, we innovatively introduce the information bottleneck theory into GCLs to remove redundant information in multiple contrasting views while retaining as much information as possible about node classification. Moreover, we add noise perturbations to the original views and reconstruct the augmented views by constructing adversarial views to improve the robustness of node feature representation. We also verified through theoretical analysis the effectiveness of this cross-attempt reconstruction mechanism and information bottleneck theory in capturing graph structure information and improving model generalization performance. Extensive experiments on real-world public datasets demonstrate that our method significantly outperforms existing state-of-the-art algorithms.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107094"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrastive Graph Representation Learning with Adversarial Cross-View Reconstruction and Information Bottleneck.\",\"authors\":\"Yuntao Shou, Haozhi Lan, Xiangyong Cao\",\"doi\":\"10.1016/j.neunet.2024.107094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Graph Neural Networks (GNNs) have received extensive research attention due to their powerful information aggregation capabilities. Despite the success of GNNs, most of them suffer from the popularity bias issue in a graph caused by a small number of popular categories. Additionally, real graph datasets always contain incorrect node labels, which hinders GNNs from learning effective node representations. Graph contrastive learning (GCL) has been shown to be effective in solving the above problems for node classification tasks. Most existing GCL methods are implemented by randomly removing edges and nodes to create multiple contrasting views, and then maximizing the mutual information (MI) between these contrasting views to improve the node feature representation. However, maximizing the mutual information between multiple contrasting views may lead the model to learn some redundant information irrelevant to the node classification task. To tackle this issue, we propose an effective Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck (CGRL) for node classification, which can adaptively learn to mask the nodes and edges in the graph to obtain the optimal graph structure representation. Furthermore, we innovatively introduce the information bottleneck theory into GCLs to remove redundant information in multiple contrasting views while retaining as much information as possible about node classification. Moreover, we add noise perturbations to the original views and reconstruct the augmented views by constructing adversarial views to improve the robustness of node feature representation. We also verified through theoretical analysis the effectiveness of this cross-attempt reconstruction mechanism and information bottleneck theory in capturing graph structure information and improving model generalization performance. Extensive experiments on real-world public datasets demonstrate that our method significantly outperforms existing state-of-the-art algorithms.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"184 \",\"pages\":\"107094\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.107094\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.107094","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络因其强大的信息聚合能力而受到广泛的研究关注。尽管gnn取得了成功,但大多数gnn都存在由少数流行类别引起的图中的流行偏差问题。此外,真实的图数据集总是包含不正确的节点标签,这阻碍了gnn学习有效的节点表示。图对比学习(GCL)已被证明可以有效地解决节点分类任务中的上述问题。大多数现有的GCL方法是通过随机移除边缘和节点来创建多个对比视图,然后最大化这些对比视图之间的互信息(MI)来改进节点特征表示。然而,最大化多个对比视图之间的互信息可能会导致模型学习到一些与节点分类任务无关的冗余信息。为了解决这一问题,我们提出了一种有效的基于对抗性交叉视图重构和信息瓶颈(CGRL)的对比图表示学习方法用于节点分类,该方法可以自适应学习对图中的节点和边进行屏蔽,以获得最优的图结构表示。此外,我们创新地将信息瓶颈理论引入到gcl中,在保留尽可能多的节点分类信息的同时,去除多个对比视图中的冗余信息。此外,我们在原始视图中加入噪声扰动,并通过构造对抗视图来重建增强视图,以提高节点特征表示的鲁棒性。通过理论分析验证了这种交叉尝试重构机制和信息瓶颈理论在获取图结构信息和提高模型泛化性能方面的有效性。在真实世界的公共数据集上进行的大量实验表明,我们的方法明显优于现有的最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Contrastive Graph Representation Learning with Adversarial Cross-View Reconstruction and Information Bottleneck.

Graph Neural Networks (GNNs) have received extensive research attention due to their powerful information aggregation capabilities. Despite the success of GNNs, most of them suffer from the popularity bias issue in a graph caused by a small number of popular categories. Additionally, real graph datasets always contain incorrect node labels, which hinders GNNs from learning effective node representations. Graph contrastive learning (GCL) has been shown to be effective in solving the above problems for node classification tasks. Most existing GCL methods are implemented by randomly removing edges and nodes to create multiple contrasting views, and then maximizing the mutual information (MI) between these contrasting views to improve the node feature representation. However, maximizing the mutual information between multiple contrasting views may lead the model to learn some redundant information irrelevant to the node classification task. To tackle this issue, we propose an effective Contrastive Graph Representation Learning with Adversarial Cross-view Reconstruction and Information Bottleneck (CGRL) for node classification, which can adaptively learn to mask the nodes and edges in the graph to obtain the optimal graph structure representation. Furthermore, we innovatively introduce the information bottleneck theory into GCLs to remove redundant information in multiple contrasting views while retaining as much information as possible about node classification. Moreover, we add noise perturbations to the original views and reconstruct the augmented views by constructing adversarial views to improve the robustness of node feature representation. We also verified through theoretical analysis the effectiveness of this cross-attempt reconstruction mechanism and information bottleneck theory in capturing graph structure information and improving model generalization performance. Extensive experiments on real-world public datasets demonstrate that our method significantly outperforms existing state-of-the-art algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1