用户偏好交互融合与交换注意图神经网络推荐系统。

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Networks Pub Date : 2025-01-04 DOI:10.1016/j.neunet.2024.107116
Mingqi Li, Wenming Ma, Zihao Chu
{"title":"用户偏好交互融合与交换注意图神经网络推荐系统。","authors":"Mingqi Li, Wenming Ma, Zihao Chu","doi":"10.1016/j.neunet.2024.107116","DOIUrl":null,"url":null,"abstract":"<p><p>Recommender systems are widely used in various applications. Knowledge graphs are increasingly used to improve recommendation performance by extracting valuable information from user-item interactions. However, current methods do not effectively use fine-grained information within the knowledge graph. Additionally, some recommendation methods based on graph neural networks tend to overlook the importance of entities to users when performing aggregation operations. To alleviate these issues, we introduce a knowledge-graph-based graph neural network (PIFSA-GNN) for recommendation with two key components. The first component, user preference interaction fusion, incorporates user auxiliary information in the recommendation process. This enhances the influence of users on the recommendation model. The second component is an attention mechanism called user preference swap attention, which improves entity weight calculation for effectively aggregating neighboring entities. Our method was extensively tested on three real-world datasets. On the movie dataset, our method outperforms the best baseline by 1.3% in AUC and 2.8% in F1; Hit@1 increases by 0.7%, Hit@5 by 0.6%, and Hit@10 by 1.0%. On the restaurant dataset, AUC improves by 2.6% and F1 by 7.2%; Hit@1 increases by 1.3%, Hit@5 by 3.7%, and Hit@10 by 2.9%. On the music dataset, AUC improves by 0.9% and F1 by 0.4%; Hit@1 increases by 3.3%, Hit@5 by 1.2%, and Hit@10 by 0.2%. The results show that it outperforms baseline methods.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"184 ","pages":"107116"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"User preference interaction fusion and swap attention graph neural network for recommender system.\",\"authors\":\"Mingqi Li, Wenming Ma, Zihao Chu\",\"doi\":\"10.1016/j.neunet.2024.107116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recommender systems are widely used in various applications. Knowledge graphs are increasingly used to improve recommendation performance by extracting valuable information from user-item interactions. However, current methods do not effectively use fine-grained information within the knowledge graph. Additionally, some recommendation methods based on graph neural networks tend to overlook the importance of entities to users when performing aggregation operations. To alleviate these issues, we introduce a knowledge-graph-based graph neural network (PIFSA-GNN) for recommendation with two key components. The first component, user preference interaction fusion, incorporates user auxiliary information in the recommendation process. This enhances the influence of users on the recommendation model. The second component is an attention mechanism called user preference swap attention, which improves entity weight calculation for effectively aggregating neighboring entities. Our method was extensively tested on three real-world datasets. On the movie dataset, our method outperforms the best baseline by 1.3% in AUC and 2.8% in F1; Hit@1 increases by 0.7%, Hit@5 by 0.6%, and Hit@10 by 1.0%. On the restaurant dataset, AUC improves by 2.6% and F1 by 7.2%; Hit@1 increases by 1.3%, Hit@5 by 3.7%, and Hit@10 by 2.9%. On the music dataset, AUC improves by 0.9% and F1 by 0.4%; Hit@1 increases by 3.3%, Hit@5 by 1.2%, and Hit@10 by 0.2%. The results show that it outperforms baseline methods.</p>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"184 \",\"pages\":\"107116\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neunet.2024.107116\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2024.107116","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

推荐系统广泛应用于各种应用中。知识图越来越多地用于通过从用户-物品交互中提取有价值的信息来提高推荐性能。然而,目前的方法不能有效地利用知识图中的细粒度信息。此外,一些基于图神经网络的推荐方法在进行聚合操作时往往忽略了实体对用户的重要性。为了缓解这些问题,我们引入了一种基于知识图的图神经网络(PIFSA-GNN),该网络由两个关键组件组成。第一个组件是用户偏好交互融合,在推荐过程中融入用户辅助信息。这增强了用户对推荐模型的影响。第二个组件是一种称为用户偏好交换注意的注意力机制,它改进了实体权重计算,从而有效地聚合相邻实体。我们的方法在三个真实世界的数据集上进行了广泛的测试。在电影数据集上,我们的方法在AUC上优于最佳基线1.3%,在F1上优于2.8%;Hit@1增长0.7%,Hit@5增长0.6%,Hit@10增长1.0%。在餐厅数据集上,AUC提高了2.6%,F1提高了7.2%;Hit@1增长1.3%,Hit@5增长3.7%,Hit@10增长2.9%。在音乐数据集上,AUC提高0.9%,F1提高0.4%;Hit@1增长3.3%,Hit@5增长1.2%,Hit@10增长0.2%。结果表明,该方法优于基准方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
User preference interaction fusion and swap attention graph neural network for recommender system.

Recommender systems are widely used in various applications. Knowledge graphs are increasingly used to improve recommendation performance by extracting valuable information from user-item interactions. However, current methods do not effectively use fine-grained information within the knowledge graph. Additionally, some recommendation methods based on graph neural networks tend to overlook the importance of entities to users when performing aggregation operations. To alleviate these issues, we introduce a knowledge-graph-based graph neural network (PIFSA-GNN) for recommendation with two key components. The first component, user preference interaction fusion, incorporates user auxiliary information in the recommendation process. This enhances the influence of users on the recommendation model. The second component is an attention mechanism called user preference swap attention, which improves entity weight calculation for effectively aggregating neighboring entities. Our method was extensively tested on three real-world datasets. On the movie dataset, our method outperforms the best baseline by 1.3% in AUC and 2.8% in F1; Hit@1 increases by 0.7%, Hit@5 by 0.6%, and Hit@10 by 1.0%. On the restaurant dataset, AUC improves by 2.6% and F1 by 7.2%; Hit@1 increases by 1.3%, Hit@5 by 3.7%, and Hit@10 by 2.9%. On the music dataset, AUC improves by 0.9% and F1 by 0.4%; Hit@1 increases by 3.3%, Hit@5 by 1.2%, and Hit@10 by 0.2%. The results show that it outperforms baseline methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
期刊最新文献
Estimating global phase synchronization by quantifying multivariate mutual information and detecting network structure. Event-based adaptive fixed-time optimal control for saturated fault-tolerant nonlinear multiagent systems via reinforcement learning algorithm. Lie group convolution neural networks with scale-rotation equivariance. Multi-hop interpretable meta learning for few-shot temporal knowledge graph completion. An object detection-based model for automated screening of stem-cells senescence during drug screening.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1