Pu Hou , Kun Lei , Zhishen Zhang , Pengchao Zhao , Jinghua Li , Guangda Li , Jianfeng Bao , Xin Li , Yun Xue , Chunshan Quan , Fangfang Fu
{"title":"粘接透明抗菌季铵化壳聚糖/氧化葡聚糖/聚多巴胺纳米颗粒水凝胶加速伤口愈合。","authors":"Pu Hou , Kun Lei , Zhishen Zhang , Pengchao Zhao , Jinghua Li , Guangda Li , Jianfeng Bao , Xin Li , Yun Xue , Chunshan Quan , Fangfang Fu","doi":"10.1016/j.bioadv.2025.214176","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa. Moreover, these hydrogels exhibit a well-defined porous structure, rapid gelling ability (<50 s), exceptional self-healing capacity, and a swelling rate surpassing 760 %. Furthermore, the QOP hydrogels demonstrate outstanding hemocompatibility (hemolysis rate < 3 %) and cytocompatibility (cell viability >100 %). In addition, they display potent inhibition against <em>Staphylococcus aureus</em>, methicillin-resistant <em>S. aureus</em> (MRSA), <em>Staphylococcus pasteuri</em> and <em>Escherichia coli</em>, with bactericidal rates exceeded 90 %. The closure of MRSA-infected wounds along with H&E and Masson staining analysis revealed that QOP hydrogels can expedite wound healing by stimulating collagen deposition and facilitating angiogenesis.</div></div>","PeriodicalId":51111,"journal":{"name":"Materials Science & Engineering C-Materials for Biological Applications","volume":"169 ","pages":"Article 214176"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adhesive transparent antimicrobial quaternized chitosan/oxidized dextran/polydopamine nanoparticle hydrogels for accelerated wound healing\",\"authors\":\"Pu Hou , Kun Lei , Zhishen Zhang , Pengchao Zhao , Jinghua Li , Guangda Li , Jianfeng Bao , Xin Li , Yun Xue , Chunshan Quan , Fangfang Fu\",\"doi\":\"10.1016/j.bioadv.2025.214176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa. Moreover, these hydrogels exhibit a well-defined porous structure, rapid gelling ability (<50 s), exceptional self-healing capacity, and a swelling rate surpassing 760 %. Furthermore, the QOP hydrogels demonstrate outstanding hemocompatibility (hemolysis rate < 3 %) and cytocompatibility (cell viability >100 %). In addition, they display potent inhibition against <em>Staphylococcus aureus</em>, methicillin-resistant <em>S. aureus</em> (MRSA), <em>Staphylococcus pasteuri</em> and <em>Escherichia coli</em>, with bactericidal rates exceeded 90 %. The closure of MRSA-infected wounds along with H&E and Masson staining analysis revealed that QOP hydrogels can expedite wound healing by stimulating collagen deposition and facilitating angiogenesis.</div></div>\",\"PeriodicalId\":51111,\"journal\":{\"name\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"volume\":\"169 \",\"pages\":\"Article 214176\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science & Engineering C-Materials for Biological Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772950825000032\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science & Engineering C-Materials for Biological Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772950825000032","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa. Moreover, these hydrogels exhibit a well-defined porous structure, rapid gelling ability (<50 s), exceptional self-healing capacity, and a swelling rate surpassing 760 %. Furthermore, the QOP hydrogels demonstrate outstanding hemocompatibility (hemolysis rate < 3 %) and cytocompatibility (cell viability >100 %). In addition, they display potent inhibition against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus pasteuri and Escherichia coli, with bactericidal rates exceeded 90 %. The closure of MRSA-infected wounds along with H&E and Masson staining analysis revealed that QOP hydrogels can expedite wound healing by stimulating collagen deposition and facilitating angiogenesis.
期刊介绍:
Biomaterials Advances, previously known as Materials Science and Engineering: C-Materials for Biological Applications (P-ISSN: 0928-4931, E-ISSN: 1873-0191). Includes topics at the interface of the biomedical sciences and materials engineering. These topics include:
• Bioinspired and biomimetic materials for medical applications
• Materials of biological origin for medical applications
• Materials for "active" medical applications
• Self-assembling and self-healing materials for medical applications
• "Smart" (i.e., stimulus-response) materials for medical applications
• Ceramic, metallic, polymeric, and composite materials for medical applications
• Materials for in vivo sensing
• Materials for in vivo imaging
• Materials for delivery of pharmacologic agents and vaccines
• Novel approaches for characterizing and modeling materials for medical applications
Manuscripts on biological topics without a materials science component, or manuscripts on materials science without biological applications, will not be considered for publication in Materials Science and Engineering C. New submissions are first assessed for language, scope and originality (plagiarism check) and can be desk rejected before review if they need English language improvements, are out of scope or present excessive duplication with published sources.
Biomaterials Advances sits within Elsevier''s biomaterials science portfolio alongside Biomaterials, Materials Today Bio and Biomaterials and Biosystems. As part of the broader Materials Today family, Biomaterials Advances offers authors rigorous peer review, rapid decisions, and high visibility. We look forward to receiving your submissions!