分子内2-氨基烯基阳离子-二烯(4 + 3)环加成构建三维复杂性

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2025-01-14 DOI:10.1002/anie.202423405
Lulu Shen, Tianzhu Qin, Chongling Jiao, Weiwei Zi
{"title":"分子内2-氨基烯基阳离子-二烯(4 + 3)环加成构建三维复杂性","authors":"Lulu Shen, Tianzhu Qin, Chongling Jiao, Weiwei Zi","doi":"10.1002/anie.202423405","DOIUrl":null,"url":null,"abstract":"Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation–diene (4 + 3) cycloaddition reactions. By using 1,3-diene-tethered ethynyl methylene cyclic carbamates as substrates, we were able to construct various cycloheptanoid-containing polycyclic scaffolds, which are present in many bioactive molecules. The cycloaddition products were rich in functionality that could undergo various chemical transformations. The synthetic utility of the method was illustrated by total synthesis of the natural products (±)-mint ketone and (±)-aphanamol I. Mechanistic studies indicated that the cycloadditions proceed via a concerted [4π + 2π] mechanism and that an endo-selective pathway is favored.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"84 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building Three-Dimensional Complexity by Intramolecular 2-Aminoallyl Cation–Diene (4 + 3) Cycloaddition\",\"authors\":\"Lulu Shen, Tianzhu Qin, Chongling Jiao, Weiwei Zi\",\"doi\":\"10.1002/anie.202423405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation–diene (4 + 3) cycloaddition reactions. By using 1,3-diene-tethered ethynyl methylene cyclic carbamates as substrates, we were able to construct various cycloheptanoid-containing polycyclic scaffolds, which are present in many bioactive molecules. The cycloaddition products were rich in functionality that could undergo various chemical transformations. The synthetic utility of the method was illustrated by total synthesis of the natural products (±)-mint ketone and (±)-aphanamol I. Mechanistic studies indicated that the cycloadditions proceed via a concerted [4π + 2π] mechanism and that an endo-selective pathway is favored.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202423405\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202423405","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

快速构建富含C(sp3)的三维多环的可靠方法在有机合成和药物化学中有着很高的需求。虽然有各种成熟的体系用于合成五元或六元多环,但缺乏获得多种含环庚烷的多环支架的催化平台。本文描述了一种铜催化分子内2-氨基烯基阳离子-二烯(4 + 3)环加成反应的方法。以1,3-二烯系链乙基亚甲基环氨基甲酸酯为底物,构建了多种含类环庚烷的多环支架,这些支架存在于许多生物活性分子中。环加成产物具有丰富的功能,可以进行多种化学转化。天然产物(±)-薄荷酮和(±)-薄荷酚的全合成证明了该方法的合成效用。机理研究表明,环加成是通过协调的[4π + 2π]机制进行的,并且有利于内选择途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Building Three-Dimensional Complexity by Intramolecular 2-Aminoallyl Cation–Diene (4 + 3) Cycloaddition
Reliable methods for rapidly constructing C(sp3)-rich three-dimensional polycycles are in high demand for organic synthesis and medicinal chemistry. Although there are various mature systems for synthesizing five- or six-membered polycycles, a catalytic platform for accessing diverse cycloheptanoid-containing polycyclic scaffolds is lacking. Herein, we describe a method for copper-catalyzed intramolecular 2-aminoallyl cation–diene (4 + 3) cycloaddition reactions. By using 1,3-diene-tethered ethynyl methylene cyclic carbamates as substrates, we were able to construct various cycloheptanoid-containing polycyclic scaffolds, which are present in many bioactive molecules. The cycloaddition products were rich in functionality that could undergo various chemical transformations. The synthetic utility of the method was illustrated by total synthesis of the natural products (±)-mint ketone and (±)-aphanamol I. Mechanistic studies indicated that the cycloadditions proceed via a concerted [4π + 2π] mechanism and that an endo-selective pathway is favored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Single-Crystal-to-Single-Crystal Synthesis of a Polymer in Two Distinct Topologies Topological Supramolecular Complexation of Metal-Organic Polyhedra for Tunable Interconnected Hierarchical Microporosity in Amorphous Form Sabatier Principle Inspired Bifunctional Alloy Interface for Stable and High-Depth Discharging Zinc Metal Anodes Towards Solid-State Batteries Using a Calcium Hydridoborate Electrolyte Exceptional Battery-level Safety of High Energy Density Lithium-Ion Batteries through Non-Flammable and Low-Exothermic Localize High Concentration Electrolytes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1