基于Cauchy-Schwarz散度的鲁棒多视图信息瓶颈

IF 14.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2025-01-08 DOI:10.1016/j.inffus.2025.102934
Qi Zhang, Mingfei Lu, Jingmin Xin, Badong Chen
{"title":"基于Cauchy-Schwarz散度的鲁棒多视图信息瓶颈","authors":"Qi Zhang, Mingfei Lu, Jingmin Xin, Badong Chen","doi":"10.1016/j.inffus.2025.102934","DOIUrl":null,"url":null,"abstract":"Efficiently preserving task-relevant information while removing noise and redundancy in multi-view data remains a core challenge. The information bottleneck principle offers an information-theoretic framework to compress data while retaining essential information for the task. However, estimating mutual information in high-dimensional spaces is computationally intractable. Commonly used variational methods introduce uncertainty and risk performance degradation. To overcome these limitations, we propose a robust deterministic multi-view information bottleneck framework that circumvents the need for variational inference or distributional assumptions. Specifically, we present a non-parametric mutual information estimation based on the Cauchy–Schwarz divergence, eliminating the need for auxiliary neural estimators and significantly simplifying the optimization of the information bottleneck. Leveraging this mutual information measure, we design a neural network framework that robustly compresses high-dimensional multi-view data into a low-dimensional representation, extracting task-relevant features that adhere to both sufficiency and minimality. Additionally, attention mechanisms are employed to fuse compact features across different views, capturing interdependencies and enhancing the integration of complementary information. This fusion process improves the robustness of the overall representation. Statistical analysis using the Nemenyi test shows statistically significant differences in performance between our method and existing algorithms, with a critical distance (CD = 1.856, <mml:math altimg=\"si1.svg\" display=\"inline\"><mml:mi>p</mml:mi></mml:math>-value <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:mo>&lt;</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>05</mml:mn></mml:mrow></mml:math>), demonstrating the superiority of our approach. Experimental results on synthetic data highlight the framework’s robustness in handling noise and redundancy, demonstrating its effectiveness in challenging environments. Validation on eight real-world datasets, including electroencephalography and Alzheimer’s neuroimaging data, confirms its superior performance, particularly with limited training samples. The implementation is available at <ce:inter-ref xlink:href=\"https://github.com/archy666/CSMVIB\" xlink:type=\"simple\">https://github.com/archy666/CSMVIB</ce:inter-ref>.","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"22 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards a robust multi-view information bottleneck using Cauchy–Schwarz divergence\",\"authors\":\"Qi Zhang, Mingfei Lu, Jingmin Xin, Badong Chen\",\"doi\":\"10.1016/j.inffus.2025.102934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficiently preserving task-relevant information while removing noise and redundancy in multi-view data remains a core challenge. The information bottleneck principle offers an information-theoretic framework to compress data while retaining essential information for the task. However, estimating mutual information in high-dimensional spaces is computationally intractable. Commonly used variational methods introduce uncertainty and risk performance degradation. To overcome these limitations, we propose a robust deterministic multi-view information bottleneck framework that circumvents the need for variational inference or distributional assumptions. Specifically, we present a non-parametric mutual information estimation based on the Cauchy–Schwarz divergence, eliminating the need for auxiliary neural estimators and significantly simplifying the optimization of the information bottleneck. Leveraging this mutual information measure, we design a neural network framework that robustly compresses high-dimensional multi-view data into a low-dimensional representation, extracting task-relevant features that adhere to both sufficiency and minimality. Additionally, attention mechanisms are employed to fuse compact features across different views, capturing interdependencies and enhancing the integration of complementary information. This fusion process improves the robustness of the overall representation. Statistical analysis using the Nemenyi test shows statistically significant differences in performance between our method and existing algorithms, with a critical distance (CD = 1.856, <mml:math altimg=\\\"si1.svg\\\" display=\\\"inline\\\"><mml:mi>p</mml:mi></mml:math>-value <mml:math altimg=\\\"si2.svg\\\" display=\\\"inline\\\"><mml:mrow><mml:mo>&lt;</mml:mo><mml:mn>0</mml:mn><mml:mo>.</mml:mo><mml:mn>05</mml:mn></mml:mrow></mml:math>), demonstrating the superiority of our approach. Experimental results on synthetic data highlight the framework’s robustness in handling noise and redundancy, demonstrating its effectiveness in challenging environments. Validation on eight real-world datasets, including electroencephalography and Alzheimer’s neuroimaging data, confirms its superior performance, particularly with limited training samples. The implementation is available at <ce:inter-ref xlink:href=\\\"https://github.com/archy666/CSMVIB\\\" xlink:type=\\\"simple\\\">https://github.com/archy666/CSMVIB</ce:inter-ref>.\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1016/j.inffus.2025.102934\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.inffus.2025.102934","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

有效地保留任务相关信息,同时去除多视图数据中的噪声和冗余仍然是一个核心挑战。信息瓶颈原理提供了一个信息理论框架来压缩数据,同时保留任务的基本信息。然而,估计高维空间中的互信息在计算上是难以处理的。常用的变分方法引入了不确定性和性能下降的风险。为了克服这些限制,我们提出了一个鲁棒的确定性多视图信息瓶颈框架,该框架绕过了对变分推理或分布假设的需要。具体来说,我们提出了一种基于Cauchy-Schwarz散度的非参数互信息估计,消除了对辅助神经估计器的需要,大大简化了信息瓶颈的优化。利用这种互信息度量,我们设计了一个神经网络框架,该框架稳健地将高维多视图数据压缩为低维表示,提取与任务相关的特征,坚持充分性和极小性。此外,注意机制用于融合不同视图之间的紧凑特征,捕获相互依赖关系并增强互补信息的集成。这种融合过程提高了整体表示的鲁棒性。使用Nemenyi检验进行统计分析表明,我们的方法与现有算法的性能差异具有统计学意义,存在临界距离(CD = 1.856, p值<;0.05),表明我们的方法具有优越性。在合成数据上的实验结果显示了该框架在处理噪声和冗余方面的鲁棒性,证明了其在具有挑战性的环境中的有效性。八个真实世界数据集的验证,包括脑电图和阿尔茨海默氏症的神经成像数据,证实了其优越的性能,特别是在有限的训练样本。该实现可从https://github.com/archy666/CSMVIB获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a robust multi-view information bottleneck using Cauchy–Schwarz divergence
Efficiently preserving task-relevant information while removing noise and redundancy in multi-view data remains a core challenge. The information bottleneck principle offers an information-theoretic framework to compress data while retaining essential information for the task. However, estimating mutual information in high-dimensional spaces is computationally intractable. Commonly used variational methods introduce uncertainty and risk performance degradation. To overcome these limitations, we propose a robust deterministic multi-view information bottleneck framework that circumvents the need for variational inference or distributional assumptions. Specifically, we present a non-parametric mutual information estimation based on the Cauchy–Schwarz divergence, eliminating the need for auxiliary neural estimators and significantly simplifying the optimization of the information bottleneck. Leveraging this mutual information measure, we design a neural network framework that robustly compresses high-dimensional multi-view data into a low-dimensional representation, extracting task-relevant features that adhere to both sufficiency and minimality. Additionally, attention mechanisms are employed to fuse compact features across different views, capturing interdependencies and enhancing the integration of complementary information. This fusion process improves the robustness of the overall representation. Statistical analysis using the Nemenyi test shows statistically significant differences in performance between our method and existing algorithms, with a critical distance (CD = 1.856, p-value <0.05), demonstrating the superiority of our approach. Experimental results on synthetic data highlight the framework’s robustness in handling noise and redundancy, demonstrating its effectiveness in challenging environments. Validation on eight real-world datasets, including electroencephalography and Alzheimer’s neuroimaging data, confirms its superior performance, particularly with limited training samples. The implementation is available at https://github.com/archy666/CSMVIB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
Optimizing the environmental design and management of public green spaces: Analyzing urban infrastructure and long-term user experience with a focus on streetlight density in the city of Las Vegas, NV DF-BSFNet: A bilateral synergistic fusion network with novel dynamic flow convolution for robust road extraction KDFuse: A high-level vision task-driven infrared and visible image fusion method based on cross-domain knowledge distillation SelfFed: Self-adaptive Federated Learning with Non-IID data on Heterogeneous Edge Devices for Bias Mitigation and Enhance Training Efficiency DEMO: A Dynamics-Enhanced Learning Model for multi-horizon trajectory prediction in autonomous vehicles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1