基于贝叶斯优化的多水下航行器沉积物羽流估计

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Frontiers in Marine Science Pub Date : 2025-01-13 DOI:10.3389/fmars.2024.1504099
Tim Benedikt von See, Jens Greinert, Thomas Meurer
{"title":"基于贝叶斯优化的多水下航行器沉积物羽流估计","authors":"Tim Benedikt von See, Jens Greinert, Thomas Meurer","doi":"10.3389/fmars.2024.1504099","DOIUrl":null,"url":null,"abstract":"Sediment plumes created by dredging or mining activities have an impact on the ecosystem in a much larger area than the mining or dredging area itself. It is therefore important and sometimes mandatory to monitor the developing plume to quantify the impact on the ecosystem including its spatial-temporal evolution. To this end, a Bayesian Optimization (BO)-based approach is proposed for plume monitoring using autonomous underwater vehicles (AUVs), which are used as a sensor network. Their paths are updated based on the BO, and additionally, a split-path method and the traveling salesman problem are utilized to account for the distances the AUVs have to travel and to increase the efficiency. To address the time variance of the plume, a sliding-window approach is used in the BO and the dynamics of the plume are modeled by a drift and decay rate of the suspended particulate matter (SPM) concentration measurements. Simulation results with SPM data from a simulation of a dredge experiment in the Pacific Ocean show that the method is able to monitor the plume over space and time with good overall estimation error.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"51 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-AUV sediment plume estimation using Bayesian optimization\",\"authors\":\"Tim Benedikt von See, Jens Greinert, Thomas Meurer\",\"doi\":\"10.3389/fmars.2024.1504099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sediment plumes created by dredging or mining activities have an impact on the ecosystem in a much larger area than the mining or dredging area itself. It is therefore important and sometimes mandatory to monitor the developing plume to quantify the impact on the ecosystem including its spatial-temporal evolution. To this end, a Bayesian Optimization (BO)-based approach is proposed for plume monitoring using autonomous underwater vehicles (AUVs), which are used as a sensor network. Their paths are updated based on the BO, and additionally, a split-path method and the traveling salesman problem are utilized to account for the distances the AUVs have to travel and to increase the efficiency. To address the time variance of the plume, a sliding-window approach is used in the BO and the dynamics of the plume are modeled by a drift and decay rate of the suspended particulate matter (SPM) concentration measurements. Simulation results with SPM data from a simulation of a dredge experiment in the Pacific Ocean show that the method is able to monitor the plume over space and time with good overall estimation error.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2024.1504099\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1504099","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

疏浚或采矿活动产生的沉积物羽流对生态系统的影响比采矿或疏浚区域本身的影响要大得多。因此,监测羽流的发展,以量化其对生态系统的影响,包括其时空演变,是很重要的,有时也是必须的。为此,提出了一种基于贝叶斯优化(BO)的自主水下航行器(auv)羽流监测方法,并将其作为传感器网络。基于BO更新其路径,并利用分离路径法和旅行推销员问题来考虑auv的行驶距离,提高效率。为了解决烟羽的时变问题,在BO中使用了滑动窗口方法,并通过悬浮颗粒物(SPM)浓度测量的漂移和衰减率来模拟烟羽的动力学。对太平洋某疏浚试验的SPM数据进行了模拟,结果表明,该方法能够对烟羽进行时空监测,总体估计误差较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-AUV sediment plume estimation using Bayesian optimization
Sediment plumes created by dredging or mining activities have an impact on the ecosystem in a much larger area than the mining or dredging area itself. It is therefore important and sometimes mandatory to monitor the developing plume to quantify the impact on the ecosystem including its spatial-temporal evolution. To this end, a Bayesian Optimization (BO)-based approach is proposed for plume monitoring using autonomous underwater vehicles (AUVs), which are used as a sensor network. Their paths are updated based on the BO, and additionally, a split-path method and the traveling salesman problem are utilized to account for the distances the AUVs have to travel and to increase the efficiency. To address the time variance of the plume, a sliding-window approach is used in the BO and the dynamics of the plume are modeled by a drift and decay rate of the suspended particulate matter (SPM) concentration measurements. Simulation results with SPM data from a simulation of a dredge experiment in the Pacific Ocean show that the method is able to monitor the plume over space and time with good overall estimation error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
期刊最新文献
Probiotic properties of Bacillus licheniformis HN318 and comparison of the effects of its bacterial cells and cultures on growth, immunity and disease resistance of hybrid grouper (Epinephelus polyphekadion♂ × Epinephelus fuscoguttatus♀) Hypoxia lowers cell carbon and nitrogen content and accelerates sinking of a marine diatom Thalassiosira pseudonana Trophic niche differentiation and foraging plasticity of long-finned pilot whales (Globicephala melas edwardii) in Tasmanian waters: insights from isotopic analysis Seaweed (Porphyra) cultivation enhances production of autochthonous refractory dissolved organic matter in coastal ecosystems Marine Prosperity Areas: a framework for aligning ecological restoration and human well-being using area-based protections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1