中尺度涡旋全生命周期的声场特征分析

IF 2.8 2区 生物学 Q1 MARINE & FRESHWATER BIOLOGY Frontiers in Marine Science Pub Date : 2025-01-13 DOI:10.3389/fmars.2024.1471670
Xiaodong Ma, Lei Zhang, Weishuai Xu, Maolin Li
{"title":"中尺度涡旋全生命周期的声场特征分析","authors":"Xiaodong Ma, Lei Zhang, Weishuai Xu, Maolin Li","doi":"10.3389/fmars.2024.1471670","DOIUrl":null,"url":null,"abstract":"Mesoscale eddies exert a profound influence on oceanic temperature and salinity structures, thereby altering the ecological environment and acoustic propagation characteristics. Prior research on acoustic propagation beneath mesoscale eddy effects has predominantly concentrated on fragmented, snapshot-style analyses. In contrast, this study employs a holistic approach by integrating multi-source data to elucidate oceanic temperature and salinity structures, ultimately impacting their ecological environment and acoustic propagation. While the existing paper, this study adopts a more comprehensive and successional methodology. Through the amalgamation of multi-source data, this research introduces an innovative mesoscale eddy tracking algorithm and an enhanced Gaussian eddy model. Utilizing the <jats:italic>BELLHOP</jats:italic> ray theory model, this investigation scrutinizes the acoustic field characteristics of a cyclonic eddy and a typical anticyclonic eddy (CE-AE) pair exhibiting complete life cycles in the Northwest Pacific. The results reveal that the complete life cycles of mesoscale eddies substantially impact the acoustic field environment. As a CE intensifies, the convergence zone (CZ) distance diminishes, the CZ width expands, and the direct wave (DW) distance shortens. Conversely, an intensifying AE increases the CZ distance, contracts the CZ width, and prolongs the DW distance. This paper presents a quantitative analysis to delineate the critical factors influencing eddy life cycles, indicating that both eddy intensity and deformation parameters significantly affect acoustic propagation characteristics, with eddy intensity exerting a more substantial influence. This research substantially contributes to the application of sea surface altimetry data for underwater acoustic studies and provides preliminary insights into the impacts of eddy parameters on underwater acoustic propagation within typical mesoscale eddy environments. Moreover, this research offers a foundation for future investigations into the intricate relationships between eddy dynamics and acoustic propagation in oceanic systems.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"16 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of acoustic field characteristics of mesoscale eddies throughout their complete life cycle\",\"authors\":\"Xiaodong Ma, Lei Zhang, Weishuai Xu, Maolin Li\",\"doi\":\"10.3389/fmars.2024.1471670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesoscale eddies exert a profound influence on oceanic temperature and salinity structures, thereby altering the ecological environment and acoustic propagation characteristics. Prior research on acoustic propagation beneath mesoscale eddy effects has predominantly concentrated on fragmented, snapshot-style analyses. In contrast, this study employs a holistic approach by integrating multi-source data to elucidate oceanic temperature and salinity structures, ultimately impacting their ecological environment and acoustic propagation. While the existing paper, this study adopts a more comprehensive and successional methodology. Through the amalgamation of multi-source data, this research introduces an innovative mesoscale eddy tracking algorithm and an enhanced Gaussian eddy model. Utilizing the <jats:italic>BELLHOP</jats:italic> ray theory model, this investigation scrutinizes the acoustic field characteristics of a cyclonic eddy and a typical anticyclonic eddy (CE-AE) pair exhibiting complete life cycles in the Northwest Pacific. The results reveal that the complete life cycles of mesoscale eddies substantially impact the acoustic field environment. As a CE intensifies, the convergence zone (CZ) distance diminishes, the CZ width expands, and the direct wave (DW) distance shortens. Conversely, an intensifying AE increases the CZ distance, contracts the CZ width, and prolongs the DW distance. This paper presents a quantitative analysis to delineate the critical factors influencing eddy life cycles, indicating that both eddy intensity and deformation parameters significantly affect acoustic propagation characteristics, with eddy intensity exerting a more substantial influence. This research substantially contributes to the application of sea surface altimetry data for underwater acoustic studies and provides preliminary insights into the impacts of eddy parameters on underwater acoustic propagation within typical mesoscale eddy environments. Moreover, this research offers a foundation for future investigations into the intricate relationships between eddy dynamics and acoustic propagation in oceanic systems.\",\"PeriodicalId\":12479,\"journal\":{\"name\":\"Frontiers in Marine Science\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Marine Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fmars.2024.1471670\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MARINE & FRESHWATER BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2024.1471670","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

中尺度涡旋对海洋温度和盐度结构产生深远影响,从而改变生态环境和声传播特性。先前对中尺度涡旋效应下的声波传播的研究主要集中在碎片化的、快照式的分析上。本研究采用综合多源数据的整体方法,阐明海洋温度和盐度结构,最终影响其生态环境和声传播。与现有论文相比,本研究采用了更为全面和连续的研究方法。通过多源数据的融合,提出了一种创新的中尺度涡旋跟踪算法和改进的高斯涡旋模型。利用BELLHOP射线理论模型,研究了西北太平洋具有完整生命周期的气旋涡旋和典型反气旋涡旋(CE-AE)对的声场特征。结果表明,中尺度涡旋的完整生命周期对声场环境有重要影响。随着CE的增强,辐合带(CZ)距离减小,CZ宽度扩大,直达波(DW)距离缩短。相反,声发射的增强增加了CZ距离,缩小了CZ宽度,延长了DW距离。定量分析了影响涡旋寿命周期的关键因素,结果表明涡旋强度和变形参数对声波传播特性都有显著影响,其中涡旋强度的影响更为显著。该研究为海表测高数据在水声研究中的应用做出了重要贡献,并为典型中尺度涡旋环境中涡旋参数对水声传播的影响提供了初步的认识。此外,该研究为进一步研究海洋系统中涡旋动力学与声传播之间的复杂关系奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of acoustic field characteristics of mesoscale eddies throughout their complete life cycle
Mesoscale eddies exert a profound influence on oceanic temperature and salinity structures, thereby altering the ecological environment and acoustic propagation characteristics. Prior research on acoustic propagation beneath mesoscale eddy effects has predominantly concentrated on fragmented, snapshot-style analyses. In contrast, this study employs a holistic approach by integrating multi-source data to elucidate oceanic temperature and salinity structures, ultimately impacting their ecological environment and acoustic propagation. While the existing paper, this study adopts a more comprehensive and successional methodology. Through the amalgamation of multi-source data, this research introduces an innovative mesoscale eddy tracking algorithm and an enhanced Gaussian eddy model. Utilizing the BELLHOP ray theory model, this investigation scrutinizes the acoustic field characteristics of a cyclonic eddy and a typical anticyclonic eddy (CE-AE) pair exhibiting complete life cycles in the Northwest Pacific. The results reveal that the complete life cycles of mesoscale eddies substantially impact the acoustic field environment. As a CE intensifies, the convergence zone (CZ) distance diminishes, the CZ width expands, and the direct wave (DW) distance shortens. Conversely, an intensifying AE increases the CZ distance, contracts the CZ width, and prolongs the DW distance. This paper presents a quantitative analysis to delineate the critical factors influencing eddy life cycles, indicating that both eddy intensity and deformation parameters significantly affect acoustic propagation characteristics, with eddy intensity exerting a more substantial influence. This research substantially contributes to the application of sea surface altimetry data for underwater acoustic studies and provides preliminary insights into the impacts of eddy parameters on underwater acoustic propagation within typical mesoscale eddy environments. Moreover, this research offers a foundation for future investigations into the intricate relationships between eddy dynamics and acoustic propagation in oceanic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Marine Science
Frontiers in Marine Science Agricultural and Biological Sciences-Aquatic Science
CiteScore
5.10
自引率
16.20%
发文量
2443
审稿时长
14 weeks
期刊介绍: Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide. With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.
期刊最新文献
Probiotic properties of Bacillus licheniformis HN318 and comparison of the effects of its bacterial cells and cultures on growth, immunity and disease resistance of hybrid grouper (Epinephelus polyphekadion♂ × Epinephelus fuscoguttatus♀) Hypoxia lowers cell carbon and nitrogen content and accelerates sinking of a marine diatom Thalassiosira pseudonana Trophic niche differentiation and foraging plasticity of long-finned pilot whales (Globicephala melas edwardii) in Tasmanian waters: insights from isotopic analysis Seaweed (Porphyra) cultivation enhances production of autochthonous refractory dissolved organic matter in coastal ecosystems Marine Prosperity Areas: a framework for aligning ecological restoration and human well-being using area-based protections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1