{"title":"过冷奥氏体冷却速率对奥氏体贝氏体钢低循环疲劳性能的影响","authors":"Yingnan Li, Yu Zhang, Xiaoyan Long, Ranran Zhu, Wanshuai Wang, Yanguo Li, Zeliang Liu","doi":"10.1016/j.ijfatigue.2025.108809","DOIUrl":null,"url":null,"abstract":"Carbide-free bainitic microstructures with different morphologies were obtained by designing different cooling rates in medium-carbon bainitic steel, and the effect of undercooled austenite cooling rate on the low cycle fatigue (LCF) properties of austempering bainitic steels was systematically investigated. The results show that with the reduction of the cooling rate, the bainitic ferrite laths are coarsened, the content of retained austenite is reduced, and the proportion of filmy retained austenite is increased. The samples with a cooling rate of 30 °C/s at low strain amplitude possessed higher fatigue life, while the samples with a cooling rate of 0.3 °C/s at high strain amplitude exhibited higher fatigue life. This is because the phase transformation induced plasticity (TRIP) effect at low strain amplitude improves the samples’ plastic deformation resistance. In contrast, the brittle martensite produced by the TRIP effect at high strain amplitude is more likely to provide a crack propagation path.","PeriodicalId":14112,"journal":{"name":"International Journal of Fatigue","volume":"45 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of undercooled austenite cooling rate on the low cycle fatigue properties of an austempering bainitic steel\",\"authors\":\"Yingnan Li, Yu Zhang, Xiaoyan Long, Ranran Zhu, Wanshuai Wang, Yanguo Li, Zeliang Liu\",\"doi\":\"10.1016/j.ijfatigue.2025.108809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbide-free bainitic microstructures with different morphologies were obtained by designing different cooling rates in medium-carbon bainitic steel, and the effect of undercooled austenite cooling rate on the low cycle fatigue (LCF) properties of austempering bainitic steels was systematically investigated. The results show that with the reduction of the cooling rate, the bainitic ferrite laths are coarsened, the content of retained austenite is reduced, and the proportion of filmy retained austenite is increased. The samples with a cooling rate of 30 °C/s at low strain amplitude possessed higher fatigue life, while the samples with a cooling rate of 0.3 °C/s at high strain amplitude exhibited higher fatigue life. This is because the phase transformation induced plasticity (TRIP) effect at low strain amplitude improves the samples’ plastic deformation resistance. In contrast, the brittle martensite produced by the TRIP effect at high strain amplitude is more likely to provide a crack propagation path.\",\"PeriodicalId\":14112,\"journal\":{\"name\":\"International Journal of Fatigue\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Fatigue\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijfatigue.2025.108809\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fatigue","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijfatigue.2025.108809","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of undercooled austenite cooling rate on the low cycle fatigue properties of an austempering bainitic steel
Carbide-free bainitic microstructures with different morphologies were obtained by designing different cooling rates in medium-carbon bainitic steel, and the effect of undercooled austenite cooling rate on the low cycle fatigue (LCF) properties of austempering bainitic steels was systematically investigated. The results show that with the reduction of the cooling rate, the bainitic ferrite laths are coarsened, the content of retained austenite is reduced, and the proportion of filmy retained austenite is increased. The samples with a cooling rate of 30 °C/s at low strain amplitude possessed higher fatigue life, while the samples with a cooling rate of 0.3 °C/s at high strain amplitude exhibited higher fatigue life. This is because the phase transformation induced plasticity (TRIP) effect at low strain amplitude improves the samples’ plastic deformation resistance. In contrast, the brittle martensite produced by the TRIP effect at high strain amplitude is more likely to provide a crack propagation path.
期刊介绍:
Typical subjects discussed in International Journal of Fatigue address:
Novel fatigue testing and characterization methods (new kinds of fatigue tests, critical evaluation of existing methods, in situ measurement of fatigue degradation, non-contact field measurements)
Multiaxial fatigue and complex loading effects of materials and structures, exploring state-of-the-art concepts in degradation under cyclic loading
Fatigue in the very high cycle regime, including failure mode transitions from surface to subsurface, effects of surface treatment, processing, and loading conditions
Modeling (including degradation processes and related driving forces, multiscale/multi-resolution methods, computational hierarchical and concurrent methods for coupled component and material responses, novel methods for notch root analysis, fracture mechanics, damage mechanics, crack growth kinetics, life prediction and durability, and prediction of stochastic fatigue behavior reflecting microstructure and service conditions)
Models for early stages of fatigue crack formation and growth that explicitly consider microstructure and relevant materials science aspects
Understanding the influence or manufacturing and processing route on fatigue degradation, and embedding this understanding in more predictive schemes for mitigation and design against fatigue
Prognosis and damage state awareness (including sensors, monitoring, methodology, interactive control, accelerated methods, data interpretation)
Applications of technologies associated with fatigue and their implications for structural integrity and reliability. This includes issues related to design, operation and maintenance, i.e., life cycle engineering
Smart materials and structures that can sense and mitigate fatigue degradation
Fatigue of devices and structures at small scales, including effects of process route and surfaces/interfaces.