中性粒细胞膜纳米囊泡对脓毒症大鼠急性肾损伤肾功能指标的影响

IF 1.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Biophysics Pub Date : 2025-01-14 DOI:10.1007/s12013-024-01664-4
Junhao Pan, Feifei Shao, Xiaorong Xiao, Xin Ke, Zhihui Guan, Hui Lin, Qingqing Yan, Xinyao Xiang, Jinming Luo
{"title":"中性粒细胞膜纳米囊泡对脓毒症大鼠急性肾损伤肾功能指标的影响","authors":"Junhao Pan, Feifei Shao, Xiaorong Xiao, Xin Ke, Zhihui Guan, Hui Lin, Qingqing Yan, Xinyao Xiang, Jinming Luo","doi":"10.1007/s12013-024-01664-4","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the efficacy of neutrophil membrane nanovesicles (NMNVs) in the treatment of acute kidney injury caused by sepsis (S-AKI). Moreover, its effects on renal function indicators in plasma [creatinine (CREA), urea (UREA)], oxidative stress factor [malondialdehyde (MDA)], inflammatory factor [myeloperoxidase (MPO), histone H4 (H4), and macrophage inflammatory protein-2 (MIP-2)] are studied. Sixty SPF grade adult male Wistar rats in a healthy state under natural infection were randomly divided into blank, LSP, and experimental groups, with 20 rats in each group. After 7 days of adaptive feeding, a S-AKI model was established in the control group and the experimental group. The control group was treated with red blood cell membrane nanovesicles (RBC-NVs), the experimental group was treated with NMNVs, and the blank group was normal rats. The clinical treatment and changes in renal function indicators of the tested rats were observed and recorded. The total effective rate of treatment in the experimental group was higher than that in the controlling group (P < 0.05). Moreover, 1 h after the construction of the S-AKI model, the CREA, UREA, MDA, MPO, H4, MIP-2 in the controlling group and experimental group were higher than those in the blank group. At 7 and 14 h after constructing S-AKI model, the CREA, UREA, MDA, MPO, H4, and MIP-2 in the controlling and experimental groups decreased. However, the above indicators in the experimental group were lower than those in the controlling group (P < 0.05), and the comparison between this group and the blank group showed P > 0.05. In summary, the efficacy of NMNV in treating S-AKI is significant, as it can reduce CREA, UREA, MDA, MPO, as well as H4 and MIP-2, effectively controlling disease progression.</p>","PeriodicalId":510,"journal":{"name":"Cell Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrophil Membrane Nanovesicles Alleviate the Renal Function Indicators in Acute Kidney Injury Caused by Septic Rats.\",\"authors\":\"Junhao Pan, Feifei Shao, Xiaorong Xiao, Xin Ke, Zhihui Guan, Hui Lin, Qingqing Yan, Xinyao Xiang, Jinming Luo\",\"doi\":\"10.1007/s12013-024-01664-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aims to explore the efficacy of neutrophil membrane nanovesicles (NMNVs) in the treatment of acute kidney injury caused by sepsis (S-AKI). Moreover, its effects on renal function indicators in plasma [creatinine (CREA), urea (UREA)], oxidative stress factor [malondialdehyde (MDA)], inflammatory factor [myeloperoxidase (MPO), histone H4 (H4), and macrophage inflammatory protein-2 (MIP-2)] are studied. Sixty SPF grade adult male Wistar rats in a healthy state under natural infection were randomly divided into blank, LSP, and experimental groups, with 20 rats in each group. After 7 days of adaptive feeding, a S-AKI model was established in the control group and the experimental group. The control group was treated with red blood cell membrane nanovesicles (RBC-NVs), the experimental group was treated with NMNVs, and the blank group was normal rats. The clinical treatment and changes in renal function indicators of the tested rats were observed and recorded. The total effective rate of treatment in the experimental group was higher than that in the controlling group (P < 0.05). Moreover, 1 h after the construction of the S-AKI model, the CREA, UREA, MDA, MPO, H4, MIP-2 in the controlling group and experimental group were higher than those in the blank group. At 7 and 14 h after constructing S-AKI model, the CREA, UREA, MDA, MPO, H4, and MIP-2 in the controlling and experimental groups decreased. However, the above indicators in the experimental group were lower than those in the controlling group (P < 0.05), and the comparison between this group and the blank group showed P > 0.05. In summary, the efficacy of NMNV in treating S-AKI is significant, as it can reduce CREA, UREA, MDA, MPO, as well as H4 and MIP-2, effectively controlling disease progression.</p>\",\"PeriodicalId\":510,\"journal\":{\"name\":\"Cell Biochemistry and Biophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12013-024-01664-4\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12013-024-01664-4","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在探讨中性粒细胞膜纳米囊泡(NMNVs)治疗脓毒症引起的急性肾损伤(S-AKI)的疗效。并研究其对血浆[肌酐(CREA)、尿素(urea)]、氧化应激因子[丙二醛(MDA)]、炎症因子[髓过氧化物酶(MPO)、组蛋白H4 (H4)、巨噬细胞炎症蛋白-2 (mmp -2)]等肾功能指标的影响。选取自然感染下SPF级健康成年雄性Wistar大鼠60只,随机分为空白组、LSP组和实验组,每组20只。自适应喂养7 d后,分别在对照组和试验组建立S-AKI模型。对照组采用红细胞膜纳米囊泡(RBC-NVs)治疗,实验组采用纳米囊泡治疗,空白组为正常大鼠。观察并记录各组大鼠的临床治疗及肾功能指标的变化。实验组治疗总有效率高于对照组(P < 0.05)。综上所述,NMNV治疗S-AKI的疗效显著,可降低CREA、尿素、MDA、MPO以及H4、MIP-2,有效控制病情进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neutrophil Membrane Nanovesicles Alleviate the Renal Function Indicators in Acute Kidney Injury Caused by Septic Rats.

This study aims to explore the efficacy of neutrophil membrane nanovesicles (NMNVs) in the treatment of acute kidney injury caused by sepsis (S-AKI). Moreover, its effects on renal function indicators in plasma [creatinine (CREA), urea (UREA)], oxidative stress factor [malondialdehyde (MDA)], inflammatory factor [myeloperoxidase (MPO), histone H4 (H4), and macrophage inflammatory protein-2 (MIP-2)] are studied. Sixty SPF grade adult male Wistar rats in a healthy state under natural infection were randomly divided into blank, LSP, and experimental groups, with 20 rats in each group. After 7 days of adaptive feeding, a S-AKI model was established in the control group and the experimental group. The control group was treated with red blood cell membrane nanovesicles (RBC-NVs), the experimental group was treated with NMNVs, and the blank group was normal rats. The clinical treatment and changes in renal function indicators of the tested rats were observed and recorded. The total effective rate of treatment in the experimental group was higher than that in the controlling group (P < 0.05). Moreover, 1 h after the construction of the S-AKI model, the CREA, UREA, MDA, MPO, H4, MIP-2 in the controlling group and experimental group were higher than those in the blank group. At 7 and 14 h after constructing S-AKI model, the CREA, UREA, MDA, MPO, H4, and MIP-2 in the controlling and experimental groups decreased. However, the above indicators in the experimental group were lower than those in the controlling group (P < 0.05), and the comparison between this group and the blank group showed P > 0.05. In summary, the efficacy of NMNV in treating S-AKI is significant, as it can reduce CREA, UREA, MDA, MPO, as well as H4 and MIP-2, effectively controlling disease progression.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Biochemistry and Biophysics
Cell Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
4.40
自引率
0.00%
发文量
72
审稿时长
7.5 months
期刊介绍: Cell Biochemistry and Biophysics (CBB) aims to publish papers on the nature of the biochemical and biophysical mechanisms underlying the structure, control and function of cellular systems The reports should be within the framework of modern biochemistry and chemistry, biophysics and cell physiology, physics and engineering, molecular and structural biology. The relationship between molecular structure and function under investigation is emphasized. Examples of subject areas that CBB publishes are: · biochemical and biophysical aspects of cell structure and function; · interactions of cells and their molecular/macromolecular constituents; · innovative developments in genetic and biomolecular engineering; · computer-based analysis of tissues, cells, cell networks, organelles, and molecular/macromolecular assemblies; · photometric, spectroscopic, microscopic, mechanical, and electrical methodologies/techniques in analytical cytology, cytometry and innovative instrument design For articles that focus on computational aspects, authors should be clear about which docking and molecular dynamics algorithms or software packages are being used as well as details on the system parameterization, simulations conditions etc. In addition, docking calculations (virtual screening, QSAR, etc.) should be validated either by experimental studies or one or more reliable theoretical cross-validation methods.
期刊最新文献
Phyto-Fingerprinting of Putranjiva roxburghii Wall. Leaf Extract and its In Vitro Anti-Inflammatory Activity. Nutraceutical Impact of Pumpkin Seed Oil on Expression Levels of EZH-2 and KRT-14 Genes against DSS-induced Inflammatory Bowel Disease in the Rat Model. Nrf2/HO-1 Pathway Mediated Protective Effects of Hydrogen in a Model of Lung Transplantation Simulated by Rat Pulmonary Microvascular Endothelial Cells. Cancer Stem Cell Regulation as a Target of Therapeutic Intervention: Insights into Breast, Cervical and Lung Cancer. Hexagonal Hollow Core PCF-Based Blood Components Sensing: Design and Simulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1