基于质量作用律的异质种群固有离散SIS模型。

IF 2.6 4区 工程技术 Q1 Mathematics Mathematical Biosciences and Engineering Pub Date : 2024-12-05 DOI:10.3934/mbe.2024340
Marcin Choiński
{"title":"基于质量作用律的异质种群固有离散SIS模型。","authors":"Marcin Choiński","doi":"10.3934/mbe.2024340","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach. We indicate functions that reflect the probability of remaining healthy, which are based on the mass action law. Additionally, we discuss the existence and local stability of the stability states that appear in the system. Moreover, we provide conditions for their global stability. Some of the results are expressed with the use of the basic reproduction number $ \\mathcal{R}_0 $. The novelty of our paper lies in assuming different values of every coefficient that describe a given process in each subpopulation. Thanks to that, we obtain the pure population's heterogeneity. Our results are in a line with expectations - the disease free stationary state is locally stable for $ \\mathcal{R}_0 < 1 $ and loses its stability after crossing $ \\mathcal{R}_0 = 1 $. We supplement our results with a numerical simulation that concerns the real case of a tuberculosis epidemic in Poland.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 12","pages":"7740-7759"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An inherently discrete-time <i>SIS</i> model based on the mass action law for a heterogeneous population.\",\"authors\":\"Marcin Choiński\",\"doi\":\"10.3934/mbe.2024340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach. We indicate functions that reflect the probability of remaining healthy, which are based on the mass action law. Additionally, we discuss the existence and local stability of the stability states that appear in the system. Moreover, we provide conditions for their global stability. Some of the results are expressed with the use of the basic reproduction number $ \\\\mathcal{R}_0 $. The novelty of our paper lies in assuming different values of every coefficient that describe a given process in each subpopulation. Thanks to that, we obtain the pure population's heterogeneity. Our results are in a line with expectations - the disease free stationary state is locally stable for $ \\\\mathcal{R}_0 < 1 $ and loses its stability after crossing $ \\\\mathcal{R}_0 = 1 $. We supplement our results with a numerical simulation that concerns the real case of a tuberculosis epidemic in Poland.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 12\",\"pages\":\"7740-7759\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024340\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024340","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们引入并分析了一个流行病在异质人群中传播的离散时间模型。作为异质人群,我们定义了一个人群,在这个人群中,我们有两个在感染风险上不同的群体:低风险群体和高风险群体。我们构建我们的模型没有离散化它的连续时间对应,这不是一个常见的方法。我们表示的函数反映了保持健康的概率,这是基于质量作用定律。此外,我们还讨论了系统中出现的稳定状态的存在性和局部稳定性。此外,我们为它们的全球稳定提供了条件。有些结果用基本再现数$ \mathcal{R}_0 $表示。本文的新颖之处在于对每个子种群中描述给定过程的每个系数假设不同的值。由此,我们得到了纯种群的异质性。我们的结果与预期一致——无病稳态在$ \mathcal{R}_0 < 1 $时是局部稳定的,在越过$ \mathcal{R}_0 = 1 $时失去稳定性。我们用一个数值模拟来补充我们的结果,该模拟涉及波兰结核病流行的真实病例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An inherently discrete-time SIS model based on the mass action law for a heterogeneous population.

In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach. We indicate functions that reflect the probability of remaining healthy, which are based on the mass action law. Additionally, we discuss the existence and local stability of the stability states that appear in the system. Moreover, we provide conditions for their global stability. Some of the results are expressed with the use of the basic reproduction number $ \mathcal{R}_0 $. The novelty of our paper lies in assuming different values of every coefficient that describe a given process in each subpopulation. Thanks to that, we obtain the pure population's heterogeneity. Our results are in a line with expectations - the disease free stationary state is locally stable for $ \mathcal{R}_0 < 1 $ and loses its stability after crossing $ \mathcal{R}_0 = 1 $. We supplement our results with a numerical simulation that concerns the real case of a tuberculosis epidemic in Poland.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
期刊最新文献
Correction to "Data augmentation based semi-supervised method to improve COVID-19 CT classification" [Mathematical Biosciences and Engineering 20(4) (2023) 6838-6852]. Correction to "IMC-MDA: Prediction of miRNA-disease association based on induction matrix completion" [Mathematical Biosciences and Engineering 20(6) (2023) 10659-10674]. A semi-supervised deep neuro-fuzzy iterative learning system for automatic segmentation of hippocampus brain MRI. Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis. Intra-specific diversity and adaptation modify regime shifts dynamics under environmental change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1