海马脑MRI自动分割的半监督深度神经模糊迭代学习系统。

IF 2.6 4区 工程技术 Q1 Mathematics Mathematical Biosciences and Engineering Pub Date : 2024-12-11 DOI:10.3934/mbe.2024344
M Nisha, T Kannan, K Sivasankari
{"title":"海马脑MRI自动分割的半监督深度神经模糊迭代学习系统。","authors":"M Nisha, T Kannan, K Sivasankari","doi":"10.3934/mbe.2024344","DOIUrl":null,"url":null,"abstract":"<p><p>The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates. This segmentation technique is significantly faster than the manual segmentation methods used in clinics. Unlike the existing approaches such as UNet and Convolutional Neural Networks (CNN), the proposed algorithm generates an image that is similar to a real image by learning the distribution much more quickly by the semi-supervised iterative learning algorithm of the Deep Neuro-Fuzzy (DNF) technique. To assess its effectiveness, the proposed segmentation technique was evaluated on a large dataset of 18,900 images from Kaggle, and the results were compared with those of existing methods. Based on the analysis of results reported in the experimental section, the proposed scheme in the Semi-Supervised Deep Neuro-Fuzzy Iterative Learning System (SS-DNFIL) achieved a 0.97 Dice coefficient, a 0.93 Jaccard coefficient, a 0.95 sensitivity (true positive rate), a 0.97 specificity (true negative rate), a false positive value of 0.09 and a 0.08 false negative value when compared to existing approaches. Thus, the proposed segmentation techniques outperform the existing techniques and produce the desired result so that an accurate diagnosis is made at the earliest stage to save human lives and to increase their life span.</p>","PeriodicalId":49870,"journal":{"name":"Mathematical Biosciences and Engineering","volume":"21 12","pages":"7830-7853"},"PeriodicalIF":2.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A semi-supervised deep neuro-fuzzy iterative learning system for automatic segmentation of hippocampus brain MRI.\",\"authors\":\"M Nisha, T Kannan, K Sivasankari\",\"doi\":\"10.3934/mbe.2024344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates. This segmentation technique is significantly faster than the manual segmentation methods used in clinics. Unlike the existing approaches such as UNet and Convolutional Neural Networks (CNN), the proposed algorithm generates an image that is similar to a real image by learning the distribution much more quickly by the semi-supervised iterative learning algorithm of the Deep Neuro-Fuzzy (DNF) technique. To assess its effectiveness, the proposed segmentation technique was evaluated on a large dataset of 18,900 images from Kaggle, and the results were compared with those of existing methods. Based on the analysis of results reported in the experimental section, the proposed scheme in the Semi-Supervised Deep Neuro-Fuzzy Iterative Learning System (SS-DNFIL) achieved a 0.97 Dice coefficient, a 0.93 Jaccard coefficient, a 0.95 sensitivity (true positive rate), a 0.97 specificity (true negative rate), a false positive value of 0.09 and a 0.08 false negative value when compared to existing approaches. Thus, the proposed segmentation techniques outperform the existing techniques and produce the desired result so that an accurate diagnosis is made at the earliest stage to save human lives and to increase their life span.</p>\",\"PeriodicalId\":49870,\"journal\":{\"name\":\"Mathematical Biosciences and Engineering\",\"volume\":\"21 12\",\"pages\":\"7830-7853\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mbe.2024344\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mbe.2024344","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

海马体是一个小而复杂的海马形状的微小结构,位于大脑内侧颞叶深处。它是大脑边缘系统的重要组成部分,负责调节情绪、记忆和空间导航。本研究的重点是对人类头部的磁共振图像进行海马体自动分割,该分割具有较高的准确率和较低的假阳性和假阴性率。这种分割技术明显快于临床上使用的人工分割方法。与UNet和卷积神经网络(CNN)等现有方法不同,该算法通过Deep Neural - fuzzy (DNF)技术的半监督迭代学习算法更快地学习分布,从而生成与真实图像相似的图像。为了评估该分割方法的有效性,在Kaggle的18900张大型图像数据集上对该分割方法进行了评估,并将结果与现有方法进行了比较。基于实验部分的结果分析,在半监督深度神经模糊迭代学习系统(SS-DNFIL)中,与现有方法相比,该方案的Dice系数为0.97,Jaccard系数为0.93,灵敏度为0.95(真阳性率),特异性为0.97(真阴性率),假阳性值为0.09,假阴性值为0.08。因此,所提出的分割技术优于现有的技术,并产生预期的结果,以便在最早的阶段做出准确的诊断,以挽救人类的生命并延长他们的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A semi-supervised deep neuro-fuzzy iterative learning system for automatic segmentation of hippocampus brain MRI.

The hippocampus is a small, yet intricate seahorse-shaped tiny structure located deep within the brain's medial temporal lobe. It is a crucial component of the limbic system, which is responsible for regulating emotions, memory, and spatial navigation. This research focuses on automatic hippocampus segmentation from Magnetic Resonance (MR) images of a human head with high accuracy and fewer false positive and false negative rates. This segmentation technique is significantly faster than the manual segmentation methods used in clinics. Unlike the existing approaches such as UNet and Convolutional Neural Networks (CNN), the proposed algorithm generates an image that is similar to a real image by learning the distribution much more quickly by the semi-supervised iterative learning algorithm of the Deep Neuro-Fuzzy (DNF) technique. To assess its effectiveness, the proposed segmentation technique was evaluated on a large dataset of 18,900 images from Kaggle, and the results were compared with those of existing methods. Based on the analysis of results reported in the experimental section, the proposed scheme in the Semi-Supervised Deep Neuro-Fuzzy Iterative Learning System (SS-DNFIL) achieved a 0.97 Dice coefficient, a 0.93 Jaccard coefficient, a 0.95 sensitivity (true positive rate), a 0.97 specificity (true negative rate), a false positive value of 0.09 and a 0.08 false negative value when compared to existing approaches. Thus, the proposed segmentation techniques outperform the existing techniques and produce the desired result so that an accurate diagnosis is made at the earliest stage to save human lives and to increase their life span.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences and Engineering
Mathematical Biosciences and Engineering 工程技术-数学跨学科应用
CiteScore
3.90
自引率
7.70%
发文量
586
审稿时长
>12 weeks
期刊介绍: Mathematical Biosciences and Engineering (MBE) is an interdisciplinary Open Access journal promoting cutting-edge research, technology transfer and knowledge translation about complex data and information processing. MBE publishes Research articles (long and original research); Communications (short and novel research); Expository papers; Technology Transfer and Knowledge Translation reports (description of new technologies and products); Announcements and Industrial Progress and News (announcements and even advertisement, including major conferences).
期刊最新文献
Correction to "Data augmentation based semi-supervised method to improve COVID-19 CT classification" [Mathematical Biosciences and Engineering 20(4) (2023) 6838-6852]. Correction to "IMC-MDA: Prediction of miRNA-disease association based on induction matrix completion" [Mathematical Biosciences and Engineering 20(6) (2023) 10659-10674]. A semi-supervised deep neuro-fuzzy iterative learning system for automatic segmentation of hippocampus brain MRI. Revisiting the classical target cell limited dynamical within-host HIV model - Basic mathematical properties and stability analysis. Intra-specific diversity and adaptation modify regime shifts dynamics under environmental change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1